统计学
不才~
这个作者很懒,什么都没留下…
展开
-
用tushare数据自定义期货大宗商品指数(2)
通过tushare 获取股票日线行情和期货主力合约数据及定义指数所用相关数据###获取股票上市公司基础信息def get_code(): df=api.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,name,area,industry,list_date') codes=df.ts_code.tolist() return codes,df####上市公司日线行情codes,df=get_co原创 2021-06-11 20:14:34 · 379 阅读 · 0 评论 -
卡方拟合性检验
1.卡方检验能检验单个多项分类名义型变量各分类间的实际观测次数与理论次数之间是否一致的问题,这里的观测次数是根据样本数据得多的实计数,理论次数则是根据理论或经验得到的期望次数。2.这一类检验称为拟合性检验。 其自由度通常为分类数减去1,理论次数通常根据某种经验或理论。3.总而言之,卡方拟合度检验用于判断不同类型结果的比例分布相对于一个期望分布的拟合程度。卡方拟合性检验适用于变量为类别型变量的情...原创 2020-04-08 08:51:47 · 6591 阅读 · 0 评论 -
卡方列联表的独立性检验
1.列联表是按两个或多个特征分类的频数数据,一般以表格形式组成。2.判断两个或多个属性之间有无关联,即判别属性之间是否独立。3.检验步骤建立原假设H0: 两属性相互独立H1: 两属性之间不独立计算自由度计算卡方统计量拒绝域对照卡方分布的临界值表,找到对应的卡方值,判断是否在拒绝域内列联表独立性检验的python实现'''(1)假设检验重要知...原创 2020-04-07 14:25:10 · 6848 阅读 · 0 评论 -
方差齐性检验
哈特利检验Hartley’s test又称最大r比法,是检验多 个方差的齐性的方法。它只能用于等测定次数所得到的方差 齐性的检验。检验统计量Fm。、=S2Amax- S nax}smm。式中,5 max是被 检验的。个方差5了中最大的方差。当由样本值计算的 Fmax值大于哈特利检验临界值表中约定显著性水平和相应自 由度时的临界值时,判 S.,。与其余的方差之间在统计土有显 著性差异。仅适用于样...原创 2020-04-02 17:26:20 · 5307 阅读 · 0 评论 -
自定义双因素方差分析
####双因素方差分析,可进行有交互作用与无交互作用 def f_twoway(df_c,col_fac1,col_fac2,col_sta,interaction=False): df=df_c.copy() list_fac1=df[col_fac1].unique() list_fac2=df[col_fac2].unique() r=len(list...原创 2020-04-02 10:35:53 · 264 阅读 · 0 评论 -
statsmodels双因素方差分析
'''1.正态性2.方差齐性3.独立性'''#双因素方差分析import pandas as pdimport numpy as npfrom statsmodels.formula.api import olsfrom statsmodels.stats.anova import anova_lmdata = pd.DataFrame([[1, 1, 32], ...原创 2020-04-02 10:23:36 · 1275 阅读 · 0 评论 -
scipy.stats单因素方差分析
###调包进行单因素方差分析import numpy as npfrom scipy import stats'''###第一种数据形式type=numpy.recarraydata = np.rec.array([('Pat', 5),('Pat', 4),('Pat', 4),('Pat', 3),('Pat', 9),('Pat', 4),('Jack', 4),('...原创 2020-04-02 10:09:11 · 1817 阅读 · 0 评论 -
自定义单因素方差分析
定义总平方和分解公式:利用检验统计量F定义检验方法:'''实现单因素方差分析'''# 导入相关包import pandas as pdimport numpy as npimport mathimport scipyfrom scipy import stats # 自定义函数 def SST(Y): sst = sum(np.power(Y - np.mea...原创 2020-04-02 09:37:06 · 296 阅读 · 0 评论