计算机基础笔记1
目录
原码
反码
补码
进制转换(二进制与十进制)
二进制运算(&|~^)
二进制加法
说明:以下均指8位二进制数形式
码码三剑客
在了解原码之前,先熟悉几个名词.。
机器数
数字在计算机中的二进制表现形式。分正负。
图解
真值
有符号数转二进制之后,其原来对应的值位真值,带符号的二进制转为其他进制之后的值称为***形式值***。
图解
注:红色的数字1是十进制-3转二进制之后的符号位
原码
符号位+真值的绝对值,即是带符号的二进制数
举例:
十进制 | 二进制原码 |
---|---|
+1(正一) | 0000 0001 |
-1(负一) | 1000 0001 |
注意:八位二进制取值范围[-127,127]即为[1111 1111,0111 1111]
反码
- 正数的反码是它本身
- 负数的反码是在其原码基础上,符号位不变,其余位取反
图解:
补码
- 正数的补码是其本身
- 负数的补码是在原码基础上,符号位不变,其余位取反后加一
- 即等价于在反码基础上+1
图解
提示:二进制加法在后面会介绍
番外篇:为什么会有补码的出现????
- 计算机中只有加法
从小学开始,亲爱的数学老师就告诉我们,在数学中,一个数减去另一个数
等于该数加上另一个数的相反数(负数)
- 举个栗子:用原码计算
1-1=1+(-1)=0
∴易知,利用二进制原码进行计算时,出现了错误的结果,
显然1-1=0而不等于-2
你可能已经想到,既然原码不行,那么用反码怎么样?继续看…
- 举个栗子:用反码计算
1-1=1+(-1)=0
注意啦!!!
最后的计算结果是
-0
(负零),虽然在数学上,0和-0可以等价,但在计算机中不行,因为已经有实例证出,两个二进制反码相减的结果等于-0的数并不唯一,了解更多,可以www.baidu.com,或者自己摸索。这里不再赘述。
∴ 在利用其反码进行计算时,也出现了不合理的结论,可见光有原码和反码并不完善,接下来有请压轴大佬补码出场。
由此,通过***补码***大佬的一番操作,终于将1-1=0证出,成功捍卫了二进制减法的地位!!!!
进制转换(二进制与十进制)
老规矩,正式进入内容之前,有必要了解一下几个相关的概念。
- 基数
数值位
x
进制,其基数就是x
—这里给出个人笔记上理解,喜欢完整解释的自行 百度举个栗子:十进制的基数位10,二进制的基数位2
-
权
也称位权 数进制中每一位固定位置对应的单位值。
举个栗子:
十进制的第二位的权位 10,第三位权位100,类推成立
二进制第二位的权位2
第三位权位4 类推成立
总结:对于N进制数,整数部分第i
位的权为
N
(
i
−
1
)
N^{(i-1)}
N(i−1)
而小数部分第j
位权为
N
(
−
j
)
N^{(-j)}
N(−j)
- 系数,基数,幂的图示
1234 = 1000 + 200 + 30 + 4 = 1 × 1 0 3 + 2 × 1 0 2 + 3 × 1 0 1 + 4 × 1 0 0 = 1234 1234 = 1000+200+30+4= 1\times 10 ^3 + 2\times10^2 + 3\times10^1 +4\times 10^0= 1234 1234=1000+200+30+4=1×103+2×102+3×101+4×100=1234
十进制转二进制(整数)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oURfzAbK-1628776994889)(https://i.loli.net/2021/08/12/SvaZs4ydIYU9cg1.png)]
小结:记住除基倒取余 即确定基数,将原值一直除以基数再记录得到的余数,最后倒着将余数写出,根据情况补位即可完成转换。
二进制转十进制(整数)
- 补齐二进制位数(注意符号位:0表正,1表负)
- 将位数乘以对应的权值
- 相加即可
举个栗子:将二进制1010转十进制
1010
(
二
进
制
)
=
00001010
=
0
×
2
0
=
0
=
1
×
2
1
=
2
=
0
×
2
2
=
0
=
1
×
2
3
=
8
=
0
+
2
+
0
+
8
=
10
(
十
进
制
)
1010{(二进制)}=00001010\\=0\times2^0=0\\=1\times2^1=2\\=0\times2^2=0\\=1\times2^3=8\\=0+2+0+8\\=10(十进制)
1010(二进制)=00001010=0×20=0=1×21=2=0×22=0=1×23=8=0+2+0+8=10(十进制)
- 特别的,若补足位的二进制符号位为1时,要先取反再换算。
e g : 11101011 ( 二 进 制 ) 转 十 进 制 1. 取 反 : − 00010100 2. 转 换 3. 最 后 结 果 − 20 eg:11101011(二进制)转十进制\\ 1.取反:-00010100\\ 2.转换\\ 3.最后结果 -20 eg:11101011(二进制)转十进制1.取反:−000101002.转换3.最后结果−20
小数和负数的进制转换后序更新…
按位与,或,异或,左右移运算
按位与(&)
图解:3 & 5 = 1
按位或|
图解:2 | 4 = 6
按位异或 ^
图解:6 ^ 7 = 1
按位非~
图解:~ (-5) = 4
左移运算<<
文解:(-5)<<2=(-20)
- 位移对象时进制数的补码
- 将二进制码左移
x
位,空出的位置用0
填充
(-5)的补码:1111 1011
左移2位: 1110 1100
转位原码:1001 0100(-20)
右移运算>>
文解:(-5)>>2
(-5)的补码:1111 1011
右移2位: 1111 1110
求出原码: 0000 0010(-2)
注意:上述步骤中的求原码不是必须的,为了方便讲解而已。
二进制加法
- 两整数二进制相加时,从低位(右边)开始
- 依次对每一位进行加法运算
- 规则:
1+1=10,1+0=1,0+0=0,0+1=1
- 注意
1+1=10
满足进位条件,需要向前一位进1,0写在本位
图解:23+13 = 36
的二进制加法
PS:二进制的减法,乘法和除法与其他部分相关内容将在后序的笔记中更新…感谢阅读与指正。
与此同时,该文同时发布在个人博客与微信公众号【白码手记】,关注不迷路!!!