下图左侧显示了一个用24根火柴棍构成的完整3×3网格。
所有火柴的长度都是1。
您可以在网格中找到许多不同大小的正方形。
在左图所示的网格中,有9个边长为1的正方形,4个边长为2的正方形和1个边长为3的正方形。
组成完整网格的每一根火柴都有唯一编号,该编号从上到下,从左到右,从1开始按顺序分配。
如果你将一些火柴棍从完整网格中取出,形成一个不完整的网格,则一部分正方形将被破坏。
右图为移除编号12,17和23的三个火柴棍后的不完整的3×3网格。
这次移除破坏了5个边长为1的正方形,3个边长为2的正方形和1个边长为3的正方形。
此时,网格不具有边长为3的正方形,但仍然具有4个边长为1的正方形和1个边长为2的正方形。
现在给定一个(完整或不完整)的n×n(n不大于5)网格,求至少再去掉多少根火柴棒,可以使得网格内不再含有任何尺寸的正方形。
输入格式
输入包含T组测试用例。
测试用例的数量T在输入文件的第一行中给出。
每个测试用例由两行组成:
第一行包含一个整数n,表示网格的规模大小。
第二行以非负整数k开头,表示所给网格相较完整的n×n网格所缺少的火柴杆数量,后跟k个整数表示所有缺少的火柴杆的具体编号。
注意,如果k等于零,则表示输入网格是完整的n×n网格。
输出格式
每个测试用例输出一个结果,表示破坏所有正方形,所需的去掉火柴棒的最小数量。
每个结果占一行。
输入样例:
2
2
0
3
3 12 17 23
输出样例:
3
3
#include<bits/stdc++.h>
using namespace std;
const int M = 70;
int T, n, tot, k, depth;
bool v[M], kv[M];
vector<int> e[M];
inline void build() {
memset(v, false, sizeof(v));
tot = 0;
scanf("%d", &n);
int delta = 2 * n + 1;
for (int len = 1; len <= n; len++)
for (int a = 1; a + len <= n + 1; a++)
for (int b = 1; b + len <= n + 1; b++) {
e[tot].clear();
for (int i = 0; i < len; i++) {
e[tot].push_back(a + (b - 1) * delta + i);
e[tot].push_back(a + (b + len - 1) * delta + i);
e[tot].push_back(delta * (b - 1 + i) + n + a);
e[tot].push_back(delta * (b - 1 + i) + n + a + len);
}
tot++;
}
scanf("%d", &k);
while (k--) {
int x;
scanf("%d", &x);
v[x] = true;
}
}
inline int f() {
memcpy(kv, v, sizeof(v));
int cnt = 0;
for (int i = 0; i < tot; i++) {
bool flag = true;
for (auto &it:e[i])
if (v[it]) {
flag = false;
break;
}
if (flag) {
cnt++;
for (auto &it:e[i])
v[it] = true;
}
}
memcpy(v, kv, sizeof(v));
return cnt;
}
inline bool check() {
for (int i = 0; i < tot; i++) {
bool flag = true;
for (auto &it:e[i])
if (v[it]) {
flag = false;
break;
}
if (flag)return false;
}
return true;
}
bool dfs(int d) {
if (d + f() > depth)return false;
if (check())return true;
for (int i = 0; i < tot; i++) {
bool flag = true;
for (auto &it:e[i]) {
flag = true;
if (v[it]) {
flag = false;
break;
}
}
if (flag) {
for (auto &it:e[i]) {
v[it] = true;
if (dfs(d + 1))return true;
v[it] = false;
}
break;
}
}
return false;
}
int main() {
cin >> T;
while (T--) {
build();
depth = 0;
while (!dfs(0))depth++;
printf("%d\n", depth);
}
return 0;
}