- 网格路径和(第三期模拟笔试)
题目描述
现有一个 m * n的网格,每个网格上都有一个非零整数,每次只能向下或者向右移动一格,计算从左上开始移动到右下的所有路径上数字的最大和。
输入
输入为一行,代表一个二维数组。
输出
输出一个整数,代表路径上的数字最大和。
样例输入
[[2,3,1],[2,5,3],[4,2,1]]
样例输出
14
提示
2->3->5->3->1 为路径和的最大值
数据范围:
1 <= m <= 20;
1 <= n <= 20;
m 和 n 有可能相等,有可能不相等。
题解(C++版本)
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 3;
char s[N];
int n, m, mp[23][23], dp[23][23];
int main(){
scanf("%s", s + 1);
int len = strlen(s + 1);
int col = 0;
for(int i = 1; i <= len; i++){
if(s[i] >= '0' && s[i] <= '9'){
mp[n][col] = mp[n][col] * 10 + s[i] - '0';
if(s[i + 1] == ',') col++;
else if(s[i + 1] == ']') {
//处理下一行
n++;
m = col + 1;
col = 0;
}
}
}
dp[0][0] = mp[0][0];
for(int i = 1; i < m; i++) dp[0][i] = dp[0][i - 1] + mp[0][i];
for(int j = 1; j < n; j++) dp[j][0] = dp[j - 1][0] + mp[j][0];
for(int i = 1; i < n; i++){
for(int j = 1;j < m; j++){
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + mp[i][j];
}
}
printf("%d\n", dp[n - 1][m - 1]);
return 0;
}