nlp
迷迷糊糊本人
这个作者很懒,什么都没留下…
展开
-
nlp实践--基于深度学习的文本分类3
链接: 基于深度学习的文本分类3.目录文本表示方法Part4Transformer原理基于预训练语言模型的词表示基于Bert的文本分类Bert PretrainBert Finetune文本表示方法Part4Transformer原理Transformer是在"Attention is All You Need ."中提出的,模型的编码部分是一组编码器的堆叠(论文中依次堆叠六个编码器),模型的解码部分是由相同数量的解码器的堆叠。我们重点关注编码部分。他们结构完全相同,但是并不共享参数,每一个编码原创 2020-08-04 22:19:51 · 235 阅读 · 0 评论 -
nlp实践--基于深度学习的文本分类2
链接: 基于深度学习的文本分类2.在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的。在本章我们将继续深入。目录文本表示方法 Part3Skip-grams原理和网络结构Skip-grams训练Hierarchical Softmax使用gensim训练word2vecTextCNNTextRNN基于TextCNN、TextRNN的文本表示TextCNNTextRNN使用HAN用于文本分类本章作业文本表示方法 Part3词向量本节通过word2v原创 2020-07-31 22:34:03 · 213 阅读 · 0 评论 -
nlp实践--基于深度学习的文本分类1
链接: 基于深度学习的文本分类1与传统机器学习不同,深度学习既提供特征提取功能,也可以完成分类的功能。目录文本表示方法 Part2文本表示方法 Part2在基于机器学习的文本分类中,介绍了4中文本表示方法:one-hot、Bag of Word、N-gram和TF-IDF。但上述方法存在一定的问题:转换得到的向量维度很高,需要较长的训练实践;没有考虑单词与单词之间的关系,只是进行了统计。...原创 2020-07-27 23:05:46 · 152 阅读 · 0 评论 -
nlp实践--基于机器学习的文本分类
链接: 基于机器学习的文本分类本章侧重使用传统机器学习,从下一章开始是基于深度学习的文本分类。目录机器学习模型文本表示方法one-hotBag of WordN-gramTF-IDF基于机器学习的文本分类练习题机器学习模型机器学习是对能通过经验自动改进的计算机算法的研究。机器学习通过历史数据训练出模型对应于人类对经验进行归纳的过程,机器学习利用模型对新数据进行预测对应于人类利用总结的规律对新问题进行预测的过程。机器学习有很多种分支:每种机器学习算法有一定的偏好,需要具体问题具体分析文原创 2020-07-25 21:44:26 · 970 阅读 · 0 评论 -
nlp实践--数据分析
学习链接: 数据读取与数据分析import pandas as pdimport matplotlib.pyplot as plttrain_df = pd.read_csv(r'D:\python\python3.6\pysl\Pre_\nlp_data\train_set.csv', sep='\t', nrows=100)#句子长度分析train_df['text_len'] = train_df['text'].apply(lambda x : len(x.split()))train原创 2020-07-22 22:39:07 · 435 阅读 · 0 评论