- 博客(29)
- 资源 (1)
- 收藏
- 关注
原创 import cv2 一直报没有模块
弄了两天,结果一个一个的尝试终于弄好了python 3.6.0TensorFlow1.15.0numpy1.16.0opencv-python==3.4.3.18
2020-09-25 11:41:44 442
原创 配置conda下载地址
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --set show_channel_urls yes
2020-08-15 06:57:17 814
原创 pip更新失败
Unable to find resource t64.exe in package pip._vendor.distlibpython -m pip uninstall pip setuptoolspip install --upgrade setuptools
2020-08-10 14:21:18 173
原创 如何在jupyter notebook中加虚拟环境
pip install --user ipykernelpython -m -ipykernel install --nume=myenv
2020-06-15 23:13:49 392
原创 keras构建以vgg16为模板的模型
用vgg16实现mnist手写数字识别from keras.applications.vgg16 import VGG16from keras.layers import Flattenfrom keras.layers import Densefrom keras.layers import Dropoutfrom keras.models import Modelfrom keras.optimizers import SGDfrom keras.datasets import mnist
2020-06-12 15:36:25 375
原创 keras构建神经网络
from keras.models import Sequentialfrom keras.layers import Densefrom keras.layers import Activationlayers = [Dense(32,impute_shape=(784,)),Activation(‘relu’),Dense(10),Activation(softmax)]model = Sequential(layers)model.summary()
2020-06-11 20:06:18 175
原创 xgboost的使用
安装xgboosthttps://www.lfd.uci.edu/~gohlke/pythonlibs/#xgboost使用xgboost导入模型import xgboost as xgbfrom xgboost.sklearn import XGBClassifierfrom xgboost.sklearn import XGBRegressor训练模型:使用交叉验证训练模型找到最优参数:from sklearn.model_selection import GridSearchCVd
2020-06-04 22:16:21 260
原创 读取文字信息
import requestsimport reimport jsonfrom docx import Documentdef get_document(url):sess = requests.Session()html = sess.get(url).content.decode("gbk")# 抓取到文档标题title = re.search('id="doc-tittle-0">(.*?)</span>', html).group(1)# 使用正则提取
2020-05-19 13:12:44 423
原创 关系图/流程图绘制方法
graphviz1、生成dot文件from sklearn.tree import export_graphvizexport_graphviz(tree_clf,out_file="./iris_tree.dot",feature_names=iris.feature_names[:],class_names=iris.target_names,rounded=True,fil...
2020-04-18 18:18:13 1411
原创 特征处理常用工具
一、对数据正态化以便观测np.log(y)二、获取除某行的数据pands->datadata.drop(charge)三、填充空值ands->datadata.fillna(0,replace=True)四、应用自定义函数ands->datadata.apply(function,axis=1,args())对dataframe的数据的每一列只用自定义函数func...
2020-04-16 15:57:34 301
原创 sklearn的常用功能
一、导入模型1、导入线性回归模型from sklearn.linear_model import LinearRegression2、模型选择from sklearn.model_selection import train_test_split3、模型评估from sklearn.metrics import mean_absolute_error...
2020-04-13 17:20:02 512
原创 线性回归解析解
theta=np.linalg.inv(x.T.dot(x)).dot(x.T).dot(y)np.linalg.inv 求矩阵的逆矩阵x.T求矩阵的转置矩阵.dot()矩阵相乘解析解的形式θ = (x逆矩乘x)矩乘x逆矩乘y
2020-04-13 16:55:49 945
原创 矩阵拼接np.concatenate()与np.c_
np中的矩阵合并np.c_[matrix]只能按照列拼接np中的矩阵合并np.concatenate([],1为列拼接/0为行拼接)a=np.array([[1,1,1],[2,2,2]])aOut[30]:array([[1, 1, 1],[2, 2, 2]])b=np.array([[1,1,1],[2,2,2]])bOut[32]:array([[1, 1, 1],[2...
2020-04-13 11:01:28 901
原创 深度学习,强化学习,深度强化学习的对比
一, 深度学习是根据所有历史数据,推测将来某一事件发生的概率。 二,强化学习是针对某些只与上一时刻相关的问题,根据本时刻与上一时刻的状态和动作,推断下一时刻某动作发生的概率。 深度学习相对是机械的,静止的。强化学习相对是不断变化的的一个连续的过程。 三,深度强化学习是通过上一时刻的深度学习预测模型和本时刻的模型,推断出下一状态采取某个动作的概率,是前面两者的结合,每次训练...
2020-04-06 07:05:55 5300
原创 命令 窗口调用anaconda安装的jupyter notebook
添加三条环境变量1、Anaconda3\Library\bin2、Anaconda3\script3、Anaconda3\
2020-03-12 17:53:27 262
原创 python 的基础用法
一、break的用法:在循环中满足中断条件时中断循环,包括和while匹配的else二、函数和方法的y应用:对象方法的应用会改变对象,将对象传给函数不改变对象三、字典的遍历,需要先遍历key,然后遍历valuefor i in dic:print(dic[i])...
2020-03-02 00:04:48 206
原创 安装tensorflow中出现的问题
+++++++++++++++++++++++++++++++++++++++++++pip更新问题python -m pip install --upgrade pip -i https://pypi.douban.com/simple+++++++++++++++++++++++++++++++++++++++++++tensorflow 不支持python3.8++++++++++...
2020-02-22 20:18:05 1256
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人