- 博客(6)
- 收藏
- 关注
原创 习题2.4.8 - 1
题目1.修改程序2.5和程序2.6,使得程序在下列情况下能够适当地显示错误信息:\(a)在式(4)或(27)中分别发生被零除。\(b)超过迭代次数max1代码function Proj_2_4()endfunction [p0,err,k,y]=newton(f,df,p0,delta,epsilon,max1)for k=1:max1 if feval(df,p0)==0 '被零除错误' break else p1=p0-feva
2021-06-12 11:59:49 225
原创 习题2.3.4 - 1
题目1.对f(x)=1000000x3−111000x2+1110x−1f(x)=1000000x^3-111000x^2+1110x-1f(x)=1000000x3−111000x2+1110x−1,当−2⩽x⩽2-2\leqslant x\leqslant 2−2⩽x⩽2,通过程序2.4求解根的近似值,精确到小数点后4位。然后利用程序2.2和程序2.3求解精确到小数点后12位的根的近似值代码 %习题2.3.4.1%通过程序2.4求解实根的近似值,近似到小数点后4位。%然后利用程序2.2和程序2
2021-06-12 11:58:45 207
原创 习题2.2.4 - 1
题目1.如果在240个月内每月付款300美元,求解满足全部年金AAA为500,000美元的利率III的近似值(精确到小数点后10位)。#代码 %习题2.2.4.1%如果在240个月内每月付款300美元,%求解满足全部年金为50000美元的利率I的近似值%(精确到小数点后10位)%初值a, b选择: %a=0.1575, f=-280.8919%b=0.1576, f=433.9995function Proj_2_2()f=@(I) 300/I*12*((1+I/12)^240-1)-
2021-06-12 11:57:36 668
原创 习题2.1.5 - 1
题目1.使用程序2.1求解下面每个函数的不动点(尽可能多)的近似值,答案精确到小数点后12位。同时,构造每个函数的图和直线y=xy=xy=x来显示所有不动点。(a) g(x)=x5−3x3−2x2+2g(x) = x^5-3x^3-2x^2+2g(x)=x5−3x3−2x2+2\par(b) g(x)=cos(sin(x))g(x) = \cos(\sin(x))g(x)=cos(sin(x))\par© g(x)=x2−sin(x+0.15)g(x) = x^2-\sin(x+0.15)g(
2021-06-12 11:55:55 742
原创 习题1.3.10 - 1
题目1.根据习题12和习题13构造算法和MATLAB程序,以便精确计算所有情况下的二次方程的根∣b∣≈b2−4ac|b|\approx\sqrt{b^2-4ac}∣b∣≈b2−4ac的情况代码%习题1.3.10.1function Proj_1_1(a,b,c)%ax^2+bx+c=0%del>||b|-sqrt(b^2-4ac)|,判断|b|是否接近根号项 sq=sqrt(b^2-4*a*c); q=abs(abs(b)-sq);%与规定的值进行比较 del =
2021-06-12 11:53:40 291
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人