1D1D动态规划

本文介绍了1D1D动态规划的概念,重点讨论了如何判断具有决策单调性的状态转移方程,并阐述了四边形不等式的重要性。在实现过程中,使用单调队列进行优化,并给出了算法的基本框架。最后指出,满足一定条件的1D1D动态规划问题具有通用的解决策略。

1D1D动态规划的转移式是长这样的:
对于形如 f ( i ) = m i n ( f ( j ) + w ( j , i ) ) , 0 < = j < = i − 1 f(i)=min(f(j)+w(j,i)) ,0<=j<=i-1 f(i)=min(f(j)+w(j,i)),0<=j<=i1的状态转移方程,记 p [ i ] p[i] p[i]为令 f [ i ] f[i] f[i]取到最小值的 j j j的值,即 p [ i ] p[i] p[i] f [ i ] f[i] f[i]的最优决策。若 p p p [ 1 , N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值