这段时间复习初中和高中的数学时惊喜的看到其中有不少关于统计学的一些介绍,我已经不记得当年学习的时候是否有相关的内容了,不过这些基础的概念还是蛮不错的,所以也做了这个笔记记录下来。
统计
统计思想的基础知识能够帮助把随机性归纳于可能的规律性中。统计思想从我们如何观察事物本身如何真正发生两方面,帮助我们理解随机性和规律性的重要性。因此,统计可以看作是一项对随机性中的规律性的研究。同时也是对数据中的偏差问题的研究。
如果你觉得这篇文章看起来稍微还有些吃力,或者想要更系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,我也被圈粉了。教程不仅通俗易懂,而且很风趣幽默。
统计学基本概念(初中数学)
样本容量:样本中个体的数目
频数:落在不同小组的数据个数为该组的频数
频率:频数与数据总数的比为频率
组数和组距:按照一定的范围分成若干分组,分成组的个数为组数。每一组的两个端点的差叫做组距
平均数:所有样本的和除以样本容量,缺点:易受极值的影响 (也就是我们经常抱怨的“被平均”)
观察上述计算,其可转换为矩阵的计算,因此通常称之为损益矩阵
若采用树状结构来表示所有的结果和平均损益,则叫做决策树方法 (若概率的变化对最优决策的影响很大则成为敏感型)
马尔可夫型决策
马尔可夫性:在已知现在的情况下,将来的随机变化规律与过去发生的事件无关
我们称具有马尔可夫性的随机变量序列为马尔可夫链
状态从i到状态j的转移概率
可以将转移概率表示成矩阵,即马尔可夫链的转移概率矩阵
利用马尔可夫链的性质来计算各行动方案的平均收益或风险,以选择最优决策的方法称为马尔可夫决策法
对初高中的复习笔记整理告一段落,经历了“相逢好比初相识”,“温故而知新”,“学而时习之,不亦悦乎”的心路历程,也算是给以后辅导儿子做做准备吧:)
接下来开始对人工智能的基本概念进行整理。