自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(85)
  • 收藏
  • 关注

原创 实现多模态图像融合及下游双层次动态学习项目(附代码)

近年来,图像融合和场景理解等多模态场景感知任务在智能视觉系统中受到了广泛关注。然而,早期的努力总是考虑单方面推进某一项任务,而忽略其他任务,很少调查它们之间的潜在联系,以共同推进。为了克服这些限制,我们建立了分层双任务驱动的深度模型来桥接这些任务。具体而言,我们首先构建图像融合模块融合互补特征和级联双任务相关模块,包括视觉效果判别器和特征测量语义网络。我们提供了一个双层面的视角来制定图像融合和后续的下游任务。为了将不同的任务相关响应纳入图像融合,我们将图像融合作为主要目标,并将双模块作为可学习约束。

2024-05-22 10:58:57 1552

原创 一分钟教会你五种CycleGAN的优质创新思路(附代码)

本文的创新点部分,是来自我即将发表的一篇核心文章!!!效果好的一批,分享给所有努力学习的你们。代码都开源了,要个赞不过分吧!

2023-07-17 17:31:19 11490 51

原创 一文教会你风格迁移CycleGAN从入门到高阶再到最终成功魔改(附成功魔改代码)

🔥🔥本文的创新点部分,我将把我的整个项目过程所使用到的绝大多数trick以及创新部分进行开源。只有淋过雨的孩子才会懂得给别人打伞,所以我开源的目的很简单,希望可以帮助到有缘相遇的初学者快速了解并掌握该方向内容。有能力的同学可以进行二次改进创新。我的最终模型在定性和定量的评估中效果均有提升。后续代码将更新到GitHub上,如果对大家有帮助,希望可以得到您的免费star✨。本人万分感谢!!!本文的结构图均为本人绘制,如有需可以评论区留言❤五万字的文章创作不易,如有帮助劳烦免费点赞收藏一波,谢谢!

2023-07-11 20:20:33 19835 38

原创 卷积神经网络基础(最详细)+如何写代码(Pytorch)+推荐学习顺序+心得感悟

1)很多人在介绍卷积神经网络的时候,包括很多书籍,比如《python深度学习》都想用一个形象的例子来介绍卷积神经网络的作用是提取图像的特征。以《python深度学习》为例,大家都会说,第一层卷积是为了提取一些线条和曲线的特征,再通过一层卷积提取到高级的特征,比如眼睛,鼻子,猫耳朵等。但其实这样的形容是不准确的,换句话来说只能是为了方便感性的了解,所以才举了一个特殊的例子。因为在卷积神经网络中,每一层提取的特征是什么,其实每一次都是不同的。因为每一个模型不同卷积层的参数(W,a,b等)的初始化都...

2022-05-11 02:10:38 5980 2

原创 python图形界面教程(tkinter)

1、图形化界面设计的基本理解 当前流行的计算机桌面应用程序大多数为图形化用户界面(Graphic User Interface,GUI),即通过鼠标对菜单、按钮等图形化元素触发指令,并从标签、对话框等图型化显示容器中获取人机对话信息。 Python自带了tkinter 模块,实质上是一种流行的面向对象的GUI工具包 TK 的Python编程接口,提供了快速便利地创建GUI应用程序的方法。其图像化编程的基本步骤通常包括: 导入 tkinter 模块 创建 GUI 根窗体 添加人机交互控件..

2022-05-01 17:35:22 44298 8

原创 解决:Microsoft Visual C++ 14.0 is required.

当我们安装绝大部分python包的时候可以通过pip install 或者 conda install解决,但是任然有些包是安装不了的,比如我的就是在安装pyqt5的时候报Building wheel for PyQt5-sip (pyproject.toml) ... error,Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ Build Tools 这样的错误。

2024-01-03 15:42:21 2355 1

原创 【通俗易懂】git原理、安装及连接gitlab,github

一、GIT原理【这部分也挺简单,可以看看,如果没时间可以直接跳到第二部分】一、GIT原理【这部分也挺简单,可以看看,如果没时间可以直接跳到第二部分】Git 是一种分布式版本控制系统,用于管理软件项目的源代码。它是由 Linux 之父 Linus Torvalds 开发的,并已经成为了现代软件开发领域中最流行的版本控制系统之一。使用 Git 可以追踪代码的历史修改记录,方便团队协作、代码共享和代码重构。

2023-11-21 16:07:10 4672 1

原创 开源数据集分类汇总(医学,卫星,分割,分类,人脸,农业,姿势等)

本文汇总了医学图像、卫星图像、语义分割、自动驾驶、图像分类、人脸、农业、打架识别等多个方向的数据集资源,均附有下载链接。

2023-08-08 14:50:44 3900 4

原创 Maven的安装与配置(包含所有细节)

这里是很多新手都会遇到的大坑,一定要先将自己的idea版本和maven进行版本配配对。Maven3.6.3版本兼容问题注意:针对一些老项目 还是尽量采用 3.6.3版本,针对idea各个版本的兼容性就很兼容IDEA 2022 兼容maven 3.8.1及之前的所用版本IDEA 2021 兼容maven 3.8.1及之前的所用版本IDEA 2020 兼容Maven 3.6.3及之前所有版本IDEA 2018 兼容Maven3.6.1及之前所有版本。

2023-08-08 14:30:04 37748 1

原创 目标检测-击穿黑夜的PE-YOLO

近年来,卷积神经网络(CNN)的出现推动了目标检测领域的发展。大量的检测器被提出,针对基准数据集的性能也取得了令人满意的结果。然而,大多数现有的检测器都是在高质量图像和正常条件下进行研究的。而在实际环境中,往往存在许多恶劣的光照条件,如夜晚、暗光和曝光不足,导致图像质量下降,从而影响了检测器的性能。视觉感知模型使得自动系统能够理解环境并为后续任务(如轨迹规划)奠定基础,这需要一个稳健的目标检测或语义分割模型。图1是一个暗光目标检测的示例。

2023-07-28 10:07:24 2973 8

原创 在家构建您的迷你 ChatGPT

什么是指令遵循模型?

2023-07-27 19:19:37 1569 1

原创 使用 ChatGPT 进行研究的先进技术

ChatGPT 的知识截止日期为 2021 年 9 月,因此 ChatGPT 可能不知道最近发生的事件。它全面概述了当前的挑战和迄今为止所做的工作,但应对措施也应从其他来源进行验证。

2023-07-27 18:34:16 1958

原创 与 ChatGPT 进行有效交互的几种策略

上述提示的框架本质上是积极的,为 ChatGPT 应生成的内容提供了指导。让我们添加一些措辞来阻止某些输出,无论是内容还是格式。

2023-07-26 19:15:47 2619

原创 手把手教你使用YOLOV5训练自己的目标检测模型-水下目标检测

🔥🔥大家好,我是MrRoose,小伙伴后台私信比较多的毕设系列终于来了。我将通过手把手教学系列从零教你如何搭建,训练以及使用训练好的权重来完成不同方向的课题,小伙伴可以跟读我的模型原理系列来边操作边学习其中原理。做到原理和实践相结合。

2023-07-21 23:29:15 5140 3

转载 pytorch+cuda11.1安装问题及解决(pycharm)

在安装pytorch时,我没有采用anaconda(上面博客即采用这种方法),因为我是打算将cuda应用于已有的项目中(已经创建了虚拟环境),因此我直接使用pycharm安装到已有环境中。如果你使用上面的命令安装pytorch未报错,恭喜你,不用看后续步骤,直接跳到最后一步检验pytorch安装是否成功即可。②但博主的显卡不支持11.3,只支持到11.2,因此我安装了cuda11.1,pytorch版本也就选取的对应的长期支持版pytorch1.8.2。运行命令,若结果为True则安装成功。

2023-07-21 21:39:48 3205

原创 目标检测数据集标注工具Labelimg安装与使用

接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。标注完后,生成的xml文件就可以方便后续的xml_to_csv以及转换为tfrecord文件了。我一般使用W和D ,这里大家可以去试试,用上快捷键后,标注速度肯定会得到提升。②具体的标注文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的。并设置标注文件保存的目录(上图中的Change Save Dir)这里,我将文件保存的目录设置到了图片目录,大家可以自己去设置。结束后,在cmd中输入。

2023-07-19 16:51:23 10024 6

原创 深度学习-GPU多卡并行训练总结

首先打乱数据顺序,然后用 11/2 =6(向上取整),然后6乘以GPU个数2 = 12,因为只有11个数据,所以再把第一个数据(索引为6的数据)补到末尾,现在就有12个数据可以均匀分到每块GPU。BatchSampler原理: DistributedSmpler将数据分配到两个GPU上,以第一个GPU为例,分到的数据是6,9,10,1,8,7,假设batch_size=2,就按顺序把数据两两一组,在训练时,每次获取一个batch的数据,就从组织好的一个个batch中取到。后面的部分和单GPU相同。

2023-07-06 10:56:29 4980

原创 本地离线安装Selenium

安装包2:先按照安装包1中把cmd的路径正确导入,随后输入(xxx.whl文件名可能不同,根据你自己下载的版本来定)2、此处建议大家下载selenium的3.0+的版本,我给的地址可以让你直接进入选择历史版本的跳转页面。3、往下拉,到3左右的版本,点击版本信息。(我选择的是3.141.0)(第一个是下载源代码安装,第二个是下载支持离线安装的whl文件)打开cmd,将路径转为gz存放的路径,然后输入。)去下载selenium版本。

2023-06-25 10:44:02 2442

原创 本地离线安装SeleniumIDE(Chrome)

现需要准备一台可以连接外网的电脑,由于受到chrome的限制,我们可以选择搭梯子进行直接安装相应插件,但考虑到部分新手不会翻墙,本次提供一个不需翻墙的方法。进入网页内,找到Download部分,点击Crx4Chrome,你将会下载xxxxxx.crx文件。

2023-06-25 10:16:31 1608

原创 深度学习-网络模型的可视化工具总结

使用Keras.js,可以轻松地生成神经网络模型的摘要。摘要提供了模型的层级结构、层级名称、输出形状和可训练参数数量等信息。这有助于用户快速了解模型的组成和规模。

2023-06-20 19:54:21 4349

原创 Postman快速入门(一)

我们都知道,在发送HTTP请求的时候,一个请求中一般包含三个部分,分别是请求行,请求头,请求体。不同的接口,请求体的数据类型是不一样的,比较常见的一种就是表单类型,那么什么是表单类型呢?简单理解就是在请求头中查看Content-Type,它的值如果是:application/x-www-form-urlencoded .那么就说明客户端提交的数据是以表单形式提交的。

2023-06-19 19:15:28 6293 1

原创 百度网盘的最新插件(懂得都懂)

现在我们经常提到的油猴插件,常指Tampermonkey,但Tampermonkey翻译过来是叫篡改猴,为什么会叫油猴呢?原因是因为另一个插件Greasemonkey,它翻译过来叫油猴。而Tampermonkey作为后起之秀,功能和Greasemonkey一模一样,但脚本比前者多的多,于是现在的油猴就多指Tampermonkey。

2023-06-16 19:10:27 19440 39

原创 深度学习-小目标检测训练技巧

小目标检测广义是指在图像中检测和识别尺寸较小、面积较小的目标物体。通常来说,小目标的定义取决于具体的应用场景,但一般可以认为小目标是指尺寸小于 32*32 像素的物体,如下图 COCO 数据集的定义。当然,对于不同的任务和应用,小目标的尺寸和面积要求可能会有所不同。

2023-06-13 13:01:53 6387

原创 深度学习-各种卷积的总结

如果你听说过深度学习中不同种类的卷积(比如 2D / 3D / 1x1 /转置/扩张(Atrous)/空间可分/深度可分/平展/分组/混洗分组卷积),并且搞不清楚它们究竟是什么意思,那么这篇文章就是为你写的,能帮你理解它们实际的工作方式。在这篇文章中,我会归纳总结深度学习中常用的几种卷积,并会试图用一种每个人都能理解的方式解释它们。除了本文之外,还有一些关于这一主题的好文章,请参看原文。希望本文能帮助你构建起对卷积的直观认知,并成为你研究或学习的有用参考。

2023-06-09 17:30:50 2199

原创 深度学习-调参技巧总结

深度学习就像是机器学习里的中子弹,它不是任何任务、任何时候都有效的。了解你正在使用的结构以及你试图达成的目的,才不至于盲目地复制模型。

2023-06-05 14:15:59 1837 1

转载 深度学习-大模型LLM-微调经验分享&总结

PT方法占用显存更大,因为也增加了很多而外参数;测试耗时,采用float16进行模型推理,由于其他方法均增加了额外参数,因此其他方法的推理耗时会比Freeze方法要高。当然由于是生成模型,所以生成的长度也会影响耗时;模型在指定任务上微调之后,并没有丧失原有能力,例如生成“帮我写个快排算法”,依然可以生成-快排代码;

2023-06-02 13:35:57 1979 1

原创 入门性能测试(一)

响应时间并发用户数元件:多个类似功能组件的容器(类似于类)取样器——发送请求逻辑控制层——控制语句的执行顺序(类似于if)前置处理器——对请求参数进行预处理后置处理器——对响应结果进行提取断言——检查接口的返回结果是否与预期结果一致定时器——封装一段代码,供其他脚本调用配置元件——测试数据的初始化配置监听器——查看Jmeter脚本的运行结果组件:市县级独立的某个功能(类似于方法)把测试数据组织起来,用不同的测试数据调用相同的测试方法。

2023-05-29 10:23:00 894

原创 爱奇艺万能联播使用教程

甚至没有速度,但是等多一两分钟,速度又会恢复,并且,下载完成以后,有时候会出现“未响应”的情况。虽然速度没有跑满你的带宽,但是你对比一下官方的下载速度,你就知道这速度是真香哪。我这个百度网盘是没有充值SVIP的,百度网盘下载只有十几K的速度。点击后登录自己的网盘帐号,即能查看自己网盘的消息。众所周知,爱奇艺是百度旗下的一款产品,所以今天用。的方法实现下载百度网盘,并没有破解百度网盘,是。,最慢时也有1M多,最高速度能达到12M/S。,我选择了一部电影下载,有3.6G大小。不过呢,下载过程中,有时候。

2023-03-31 19:10:22 6232 16

原创 如何解决: ImportError: cannot import name ‘Markup’ from ‘jinja2’ Error?

Jinja2==3.0.0.然后就可以调用Markp了。Jinja2==3.1.1但其实依旧报错。

2023-03-23 09:25:47 1950 2

转载 ChatGPT模型原理

这两天,ChatGPT模型真可谓称得上是狂拽酷炫D炸天的存在了。一度登上了知乎热搜,这对科技类话题是非常难的存在。不光是做人工智能、机器学习的人关注,而是大量的各行各业从业人员都来关注这个模型,真可谓空前盛世。我赶紧把 OpenAI 以往的 GPT-n 系列论文又翻出来,重新学习一下,认真领会大规模预训练语言模型(Large Language Model)的强大之处。

2022-12-12 21:56:37 8062

转载 深度学习-图像数据增强技术总结

图像本身的变化将有助于模型对未见数据的泛化,从而不会对数据进行过拟合。以上整理的都是我们常见的数据增强技术,torchvision中还包含了很多方法,可以在他的文档中找到:https://pytorch.org/vision/stable/transforms.html。

2022-10-27 22:51:20 1540

原创 NeurIPS 22|Sequencer:完美超越Swin与ConvNeXt等前沿算法

本文提出Sequencer,一个全新且具有竞争性的架构,可以替代ViT,为分类问题提供了一个全新的视角。实验表明,Sequencer2D-L在ImageNet-1K上仅使用54M参数,实现84.6%的top-1精度。不仅如此,作者还证明了它在双分辨率波段上具有良好的可迁移性和稳健性。在最近的计算机视觉研究中,ViTViT利用自然语言处理中的实现了最先进的图像分类性能,MLP-Mixer利用简单的多层感知器也实现了具有竞争性的结果。相比之下,一些研究也表明,精心设计的卷积神经网络(CNNs)可以实现媲美。

2022-10-06 08:35:23 581

转载 经典的机器学习200道面试题及答案

1.请简要介绍下SVM。SVM,全称是support vector machine,中文名叫支持向量机。SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不同的数据分隔开。扩展:支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机、线性支持向量机及非线性支持向量机。当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机;

2022-09-16 13:29:01 6184

转载 ECCV22 RFLA:用于小目标检测的基于高斯感受野的标签分配

在本文中,作者提出了一种基于高斯感受野的标签分配(RFLA)策略用于微小目标检测。并提出了一种新的感受野距离(RFD)来直接测量高斯感受野和地面真值之间的相似性,而不是使用IoU或中心采样策略分配样本。考虑到基于IoU阈值和中心采样策略对大对象的倾斜,作者进一步设计了基于RFD的分层标签分配(HLA)模块,以实现小对象的平衡学习。在四个数据集上的大量实验证明了所提方法的有效性。作者的方法在AI-TOD数据集上的AP点数为4.0,优于SOTA。

2022-09-13 23:58:38 1099

转载 ECCV22 ScalableViT:重新思考视觉Transformer面向上下文的泛化

论文提出了一种可伸缩自我注意(Scalable Self-Attention, SSA)机制,该机制利用两个可伸缩因子来释放查询、键和值矩阵的维度,同时解除它们与输入的绑定。此外,还提出了一种基于交互式窗口的自我注意(IWSA),通过重新合并独立的值标记和聚集相邻窗口的空间信息来建立非重叠区域之间的交互。通过交替叠加SSA和IWSA,Scalable Vision Transformer (ScalableViT)在通用视觉任务上实现了优于SOTA的性能。

2022-08-24 21:39:49 395

转载 深度学习-防止模型过拟合的方法总结

大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。从上图可以很容易地看出,由于L2范数解范围是圆,所以相切的点有很大可能不在坐标轴上,而由于L1范数是菱形(顶点是凸出来的),其相切的点更可能在坐标轴上,而坐标轴上的点有一个特点,其只有一个坐标分量不为零,其他坐标分量为零,即是稀疏的。......

2022-08-08 21:27:22 503

转载 ECCV 2022 AirDet: 无需微调的小样本目标检测方法

图二. 自主探索任务的流程和 AirDet 的算法框架。图二展示了机器人自主探索任务的流程和AirDet的宏观模型结构。

2022-08-03 11:53:14 439

转载 ECCV 2022 SmoothNet:用神经网络代替平滑滤波器,不用重新训练才配叫“即插即用”

姿态估计模型在实际工程部署中,大家经常会遇见的一个问题是模型在单张图片上表现得好好的,但到了视频或摄像头上预测结果就会开始出现抖动,这显然不是我们希望看到的。https和https。之前我看到过这样一种说法,卡尔曼滤波是优秀算法工程师的护城河,足以说明其难度和重要性。但实际上,这些滤波器都需要仔细调校滤波强度,而过强的不可避免地会造成输出结果的滞后,在一些对实时性要求高的场景下不够适用。本文提出了一种基于深度学习的解决方法,用一个非常轻量不需要进行finetune,真正做到了“即插即用”。出现在。...

2022-07-26 15:29:07 999

转载 90多个深度学习开源数据集整理(目标检测、工业缺陷、图像分割等多个方向)

本文整理汇总了90+深度学习各方向的开源数据集,包含了小目标检测、目标检测、工业缺陷检测、人脸识别、姿态估计、图像分割、图像识别等方向。附下载链接。

2022-07-23 09:29:40 4137

原创 ECCV22 最新论文汇总(目标检测、图像分割、监督学习、GAN等)

ECCV2022已经放榜,共有1629篇论文中选,录用率还不到20%。为了让大家更快地获取和学习到计算机视觉前沿技术,作者对ECCV2022最新论文进行追踪,包括分研究方向的论文及代码汇总。本次更新的ECCV2022论文,包含检测,分割,图像处理,视频理解,神经网络结构设计,无监督学习,自监督学习,迁移学习等方向。......

2022-07-22 10:20:40 14969

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除