(一)三维点云课程---Kernel PCA介绍

Kernel PCA介绍

经过上面PCA的介绍,发现PCA是个好东西,但是仔细分析发现PCA是线性,对于下面的情况,PCA就没有办法:
在这里插入图片描述

此时需要将数据先通过核函数转换到一个新的空间,也就是升维过程,然后再利用PCA进行降维处理。

1.推导过程

1.输入数据 x i ∈ R n 0 x_i \in R^{n_0} xiRn0 ,存在一个非线性函数映射 ϕ : R n 0 → R n 1 \phi :{R^{{n_0}}} \to {R^{{n_1}}} ϕ:Rn0Rn1,其实就是升维过程
2.按照线性PCA的过程,对 R n 1 R^{n_1} Rn1进行PCA操作

  • 2.1假设 ϕ ( x i ) \phi(x_i) ϕ(xi)总是零中心
    1 N ∑ i = 1 N ϕ ( x i ) = 0 \frac{1}{N}\sum\limits_{i = 1}^N {\phi ({x_i}) = 0} N1i=1Nϕ(xi)=0

  • 2.2计算协方差矩阵

H ~ = 1 N ∑ i = 1 N ϕ ( x i ) ϕ T ( x i ) \widetilde H = \frac{1}{N}\sum\limits_{i = 1}^N {\phi ({x_i})} {\phi ^T}({x_i}) H =N1i=1Nϕ(xi)ϕT(xi)

  • 2.3计算协方差矩阵的特征值和特征向量
    H ~ z ~ = λ ~ z ~ \widetilde H \widetilde z = \widetilde \lambda \widetilde z H z =λ z
    上述过程看似很简单,但是还是有一些问题,第一个就是怎么确定上述的非线性函数 ϕ \phi ϕ;第二个怎么避免高维数据的运算。

通过2.2和2.3可以推出
H ~ z ~ = 1 N ∑ i = 1 N ϕ ( x i ) ϕ T ( x i ) z ~ = λ ~ z ~ \widetilde H \widetilde z = \frac{1}{N}\sum\limits_{i = 1}^N {\phi ({x_i})} {\phi ^T}({x_i})\widetilde z = \widetilde \lambda \widetilde z H z =N1i=1Nϕ(xi)ϕT(xi)z =λ z

因为 ϕ T ( x i ) z ~ λ ~ N \frac{{{\phi ^T}({x_i})\widetilde z}}{{\widetilde \lambda N}} λ NϕT(xi)z 是常数,故
z ~ = ∑ i = 1 N ϕ ( x i ) ϕ T ( x i ) z ~ λ ~ N = ∑ j = 1 N α j ϕ ( x j ) \widetilde z = \sum\limits_{i = 1}^N {\phi ({x_i})} \frac{{{\phi ^T}({x_i})\widetilde z}}{{\widetilde \lambda N}} = \sum\limits_{j = 1}^N {{\alpha _j}\phi ({x_j})} z =i=1Nϕ(xi)λ NϕT(xi)z =j=1Nαjϕ(xj)

发现求解特征向量 z ~ \widetilde z z 可以转化为求解一系列系数 α j \alpha_j αj和一个非线性函数 ϕ ( x ) \phi(x) ϕ(x)


1.1求解 α j \alpha_j αj

再次利用 H ~ z ~ = λ ~ z ~ \widetilde H \widetilde z = \widetilde \lambda \widetilde z H z =λ z ,以及上式 z ~ \widetilde z z 的信息,可以得出
1 N ∑ i = 1 N ϕ ( x i ) ϕ T ( x i ) ( ∑ j = 1 N α j ϕ ( x j ) ) = λ ‾ ∑ j = 1 N α j ϕ ( x j ) 1 N ∑ i = 1 N ϕ ( x i ) ( ∑ j = 1 N α j ϕ T ( x i ) ϕ ( x j ) ) = λ ‾ ∑ j = 1 N α j ϕ ( x j ) \frac{1}{N}\sum\limits_{i = 1}^N {\phi ({x_i}){\phi ^T}({x_i})} (\sum\limits_{j = 1}^N {{\alpha _j}\phi ({x_j})} ) = \overline \lambda \sum\limits_{j = 1}^N {{\alpha _j}\phi ({x_j})}\\ \frac{1}{N}\sum\limits_{i = 1}^N {\phi ({x_i})} (\sum\limits_{j = 1}^N {{\alpha _j}{\phi ^T}({x_i})\phi ({x_j})} ) = \overline \lambda \sum\limits_{j = 1}^N {{\alpha _j}\phi ({x_j})} N1i=1Nϕ(xi)ϕT(xi)(j=1Nαjϕ(xj))=λj=1Nαjϕ(xj)N1i=1Nϕ(xi)(j=1NαjϕT(xi)ϕ(xj))=λj=1Nαjϕ(xj)
定义核函数 k ( x i , x j ) = ϕ T ( x i ) ϕ ( x j ) k(x_i,x_j)=\phi^T(x_i) \phi(x_j) k(xi,xj)=ϕT(xi)ϕ(xj),那么上式化简为
1 N ∑ i = 1 N ϕ ( x i ) ( ∑ j = 1 N α j k ( x i , x j ) ) = λ ‾ ∑ j = 1 N α j ϕ ( x j ) \frac{1}{N}\sum\limits_{i = 1}^N {\phi ({x_i})} (\sum\limits_{j = 1}^N {{\alpha _j}k({x_i},{x_j})} ) = \overline \lambda \sum\limits_{j = 1}^N {{\alpha _j}\phi ({x_j})} N1i=1Nϕ(xi)(j=1Nαjk(xi,xj))=λj=1Nαjϕ(xj)
两边同时乘以 ϕ T ( x k ) \phi^T(x_k) ϕT(xk),k=1,2…,N,化简得
1 N ∑ i = 1 N ϕ T ( x k ) ϕ ( x i ) ( ∑ j = 1 N α j k ( x i , x j ) ) = λ ‾ ∑ j = 1 N α j ϕ T ( x k ) ϕ ( x j ) 1 N ∑ i = 1 N k ( x k , x i ) ∑ j = 1 N α j k ( x i , x j ) ) = λ ‾ ∑ j = 1 N α j k ( x k , x j ) , k = 1 , . . . . , N \frac{1}{N}\sum\limits_{i = 1}^N {{\phi ^T}({x_k})\phi ({x_i})} (\sum\limits_{j = 1}^N {{\alpha _j}k({x_i},{x_j})} ) = \overline \lambda \sum\limits_{j = 1}^N {{\alpha _j}{\phi ^T}({x_k})\phi ({x_j})} \\ \frac{1}{N}\sum\limits_{i = 1}^N {k({x_k},{x_i})} \sum\limits_{j = 1}^N {{\alpha _j}k({x_i},{x_j})} ) = \overline \lambda \sum\limits_{j = 1}^N {{\alpha _j}k({x_k},{x_j})},k=1,....,N N1i=1NϕT(xk)ϕ(xi)(j=1Nαjk(xi,xj))=λj=1NαjϕT(xk)ϕ(xj)N1i=1Nk(xk,xi)j=1Nαjk(xi,xj))=λj=1Nαjk(xk,xj),k=1,....,N
进而得代数形式
∑ i = 1 N ∑ j = 1 N α j k ( x k , x i ) k ( x i , x j ) ) = N λ ‾ ∑ j = 1 N α j k ( x k , x j ) , k = 1 , . . . . , N \sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {{\alpha _j}k({x_k},{x_i})k({x_i},{x_j})} ) = N\overline \lambda \sum\limits_{j = 1}^N {{\alpha _j}k({x_k},{x_j})} } , k=1,....,N i=1Nj=1Nαjk(xk,xi)k(xi,xj))=Nλj=1Nαjk(xk,xj),k=1,....,N
现在定义核矩阵 K ∈ R n × n , K ( i , j ) = k ( x i , x j ) K\in R^{n \times n},K(i,j)=k(x_i,x_j) KRn×n,K(i,j)=k(xi,xj),K是对称矩阵

通过将代数形式变为矩阵形式,思考一下怎么变形的?其实也要用到k=1,2,…,N这个信息,将每种k情况进行展开,然后在合并。
K 2 α = N λ ~ K α K^2\alpha=N\widetilde \lambda K \alpha K2α=Nλ Kα
化简得
K α = N λ ~ α 令 N λ ~ = λ K α = λ α K \alpha=N\widetilde \lambda \alpha \\ 令N\widetilde \lambda=\lambda \\ K \alpha= \lambda \alpha Kα=Nλ αNλ =λKα=λα
对上式进行特征值分解,可以得到特征向量 α γ \alpha_\gamma αγ和特征值 λ γ , γ = 1 , . . . , l \lambda_\gamma,\gamma=1,...,l λγ,γ=1,...,l

但是 z ~ \widetilde z z 是个单位向量,而如果令 α j = α γ \alpha_j=\alpha_\gamma αj=αγ,就不能保证这个性质了。于是归一化单位向量 z ~ \widetilde z z
1 = z ~ γ T z ~ γ 1 = ∑ i = 1 N ∑ j = 1 N α γ i α γ j ϕ T ( x i ) ϕ ( x j ) = ∑ i = 1 N ∑ j = 1 N α γ i α γ j k ( x i , k j ) 1=\widetilde z^T_{\gamma} \widetilde z_{\gamma} \\ 1 = \sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {{\alpha _{\gamma_i}}{\alpha _{\gamma_j}}{\phi ^T}({x_i})\phi ({x_j})} } = \sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {{\alpha _{\gamma_i}}{\alpha _{\gamma_j}}k({x_i},{k_j})} } 1=z γTz γ1=i=1Nj=1NαγiαγjϕT(xi)ϕ(xj)=i=1Nj=1Nαγiαγjk(xi,kj)
写成矩阵形式,z证明见附录
1 = α γ T K α γ 1 = \alpha ^T_{\gamma }K{\alpha _\gamma } 1=αγTKαγ
因为 K α = λ α K \alpha= \lambda \alpha Kα=λα,所以上式
α γ T α γ = 1 λ γ \alpha_\gamma^T \alpha_\gamma=\frac{1}{{{\lambda _\gamma }}} αγTαγ=λγ1

于是我们只要对求出的 α γ \alpha_\gamma αγ类似归一化就是 α j \alpha_j αj,那么怎么进行类似归一化呢,详见附录


1.2 求解非线性函数 ϕ ( x ) \phi(x) ϕ(x)

因为非线性函数 ϕ ( x ) \phi(x) ϕ(x)不能直接求出,那么特征向量 z ~ \widetilde z z 就不能直接求出。但是我们并不需要特征向量的直接信息,因为我们最终会将数据重新投影到特征向量 z ~ \widetilde z z 上,那么
y r = ϕ T ( x ) z ~ γ = ∑ j = 1 N α γ j ϕ T ( x ) ϕ ( x j ) = ∑ j = 1 N α γ j k ( x , x j ) {y_r} = {\phi ^T}(x){\widetilde z_\gamma } = \sum\limits_{j = 1}^N {{\alpha _{\gamma j}}{\phi ^T}(x)\phi ({x_j})} = \sum\limits_{j = 1}^N {{\alpha _{\gamma j}}k(x,{x_j})} yr=ϕT(x)z γ=j=1NαγjϕT(x)ϕ(xj)=j=1Nαγjk(x,xj)
根据上式可以知道,我们只需要知道$\alpha 和 核 函 数 k 即 可 求 出 投 影 后 的 和核函数k即可求出投影后的 k{y_r}$

说了这么多核函数,核函数有以下几个形式

  • 线性核函数: k ( x i , x j ) = x i T x j k(x_i,x_j)=x^T_{i}x_j k(xi,xj)=xiTxj

  • 多项式核函数: k ( x i , x j ) = ( 1 + x i T x j ) p k(x_i,x_j)=(1+x^T_{i}x_j)^p k(xi,xj)=(1+xiTxj)p

  • 高斯核函数: k ( x i , x j ) = e − β ∣ ∣ x i − x j ∣ ∣ 2 k(x_i,x_j)=e^{-\beta||x_i-x_j||_2} k(xi,xj)=eβxixj2

  • 拉普拉斯核函数: k ( x i , x j ) = e − β ∣ ∣ x i − x j ∣ ∣ 1 k(x_i,x_j)=e^{-\beta||x_i-x_j||_1} k(xi,xj)=eβxixj1

关于核函数的选择,没有明确的方法,需要在实验中不停的尝试。

1.3注意点

在推导Kernel PCA自前,我们假设了 ϕ ( x i ) \phi(x_i) ϕ(xi)总是零中心,而实际的 ϕ ( x i ) \phi(x_i) ϕ(xi)并不是零中心,那么
ϕ ~ ( x i ) = ϕ ( x i ) − 1 N ∑ j = 1 N ϕ ( x j ) \widetilde \phi ({x_i}) = \phi ({x_i}) - \frac{1}{N}\sum\limits_{j = 1}^N {\phi ({x_j})} ϕ (xi)=ϕ(xi)N1j=1Nϕ(xj)
那么单位化的核 k ~ ( x i , x j ) \widetilde k(x_i,x_j) k (xi,xj)
k ~ ( x i , x j ) = ϕ ~ x i T ϕ ~ ( x j ) = ( ϕ ( x i ) − 1 N ∑ k = 1 N ϕ ( x k ) ) T ( ϕ ( x j ) − 1 N ∑ l = 1 N ϕ ( x l ) ) = k ( x i , x j ) − 1 N ∑ k = 1 N k ( x i , x k ) − 1 N ∑ k = 1 N k ( x j , x k ) + 1 N 2 ∑ k = 1 N ∑ l = 1 N k ( x k , x l ) \widetilde k(x_i,x_j)=\widetilde \phi^T_{x_i} \widetilde \phi(x_j)\\ ={(\phi ({x_i}) - \frac{1}{N}\sum\limits_{k = 1}^N {\phi ({x_k})} )^T}(\phi ({x_j}) - \frac{1}{N}\sum\limits_{l = 1}^N {\phi ({x_l})} )\\ =k({x_i},{x_j}) - \frac{1}{N}\sum\limits_{k = 1}^N {k({x_i},{x_k}) - \frac{1}{N}\sum\limits_{k = 1}^N {k({x_j},{x_k}) + \frac{1}{{{N^2}}}\sum\limits_{k = 1}^N {\sum\limits_{l = 1}^N {k({x_k},{x_l})} } } } k (xi,xj)=ϕ xiTϕ (xj)=(ϕ(xi)N1k=1Nϕ(xk))T(ϕ(xj)N1l=1Nϕ(xl))=k(xi,xj)N1k=1Nk(xi,xk)N1k=1Nk(xj,xk)+N21k=1Nl=1Nk(xk,xl)
转换成矩阵形式,具体证明参见附录
K ~ = K − 2 T 1 N K + T 1 N K T 1 N , 其 中 T 1 N 为 N × N 的 矩 阵 , 矩 阵 中 每 一 个 元 素 均 为 1 \widetilde K = K - 2{T_{\frac{1}{N}}}K + {T_{\frac{1}{N}}}K{T_{\frac{1}{N}}},其中T_{\frac{1}{N}}为N \times N的矩阵,矩阵中每一个元素均为1 K =K2TN1K+TN1KTN1,TN1N×N1


2.Kernel PCA总结

  • 选择一个核函数 k ( x i , x j ) k(x_i,x_j) k(xi,xj),计算核矩阵 K ( i , j ) = k ( x i , x j ) K(i,j)=k(x_i,x_j) K(i,j)=k(xi,xj)

  • 单位化K
    K ~ = K − 2 T 1 N K + T 1 N K T 1 N , 其 中 T 1 N 为 N × N 的 矩 阵 , 矩 阵 中 每 一 个 元 素 均 为 1 \widetilde K = K - 2{T_{\frac{1}{N}}}K + {T_{\frac{1}{N}}}K{T_{\frac{1}{N}}},其中T_{\frac{1}{N}}为N \times N的矩阵,矩阵中每一个元素均为1 K =K2TN1K+TN1KTN1,TN1N×N1

  • 求解 K ~ \widetilde K K 特征值和特征向量

    K ~ α γ = λ γ α γ \widetilde K \alpha_\gamma=\lambda_\gamma\alpha_\gamma K αγ=λγαγ

  • 单位化 α γ T α γ = 1 λ γ \alpha_\gamma^T\alpha_\gamma=\frac{1}{\lambda_\gamma} αγTαγ=λγ1

  • 将任意的点 x ∈ R n x \in R^n xRn计算其投影到 r t h r^{th} rth的主成分 y r ∈ R y_r \in R yrR
    y r = ϕ T ( x ) z ~ γ = ∑ j = 1 N α γ j ϕ T ( x ) ϕ ( x j ) = ∑ j = 1 N α γ j k ( x , x j ) {y_r} = {\phi ^T}(x){\widetilde z_\gamma } = \sum\limits_{j = 1}^N {{\alpha _{\gamma j}}{\phi ^T}(x)\phi ({x_j})} = \sum\limits_{j = 1}^N {{\alpha _{\gamma j}}k(x,{x_j})} yr=ϕT(x)z γ=j=1NαγjϕT(x)ϕ(xj)=j=1Nαγjk(x,xj)


附录

1.证明

代 数 形 式 ⇔ ∑ i = 1 N ∑ j = 1 N α γ i α γ j k ( x i , k j ) = α γ T K α γ ⇔ 矩 阵 形 式 代数形式\Leftrightarrow \sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {{\alpha _{\gamma_i}}{\alpha _{\gamma_j}}k({x_i},{k_j})} }=\alpha ^T_{\gamma}K{\alpha _\gamma } \Leftrightarrow 矩阵形式 i=1Nj=1Nαγiαγjk(xi,kj)=αγTKαγ

证明如下

先展开求和公式
∑ i = 1 N ∑ j = 1 N α γ i α γ j k ( x i , k j ) = α γ 1 ( α γ 1 k ( x 1 , k 1 ) + α γ 2 k ( x 1 , k 2 ) + . . . + α γ N k ( x 1 , k N ) ) + α γ 2 ( α γ 1 k ( x 1 , k 1 ) + α γ 2 k ( x 1 , k 2 ) + . . . + α γ N k ( x 1 , k N ) ) + . . . + α γ N ( α γ 1 k ( x 1 , k 1 ) + α γ 2 k ( x 1 , k 2 ) + . . . + α γ N k ( x 1 , k N ) ) \sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {{\alpha _{{\gamma _i}}}{\alpha _{{\gamma _j}}}k({x_i},{k_j})} } = {\alpha _{\gamma 1}}({\alpha _{\gamma 1}}k({x_1},{k_1}) + {\alpha _{\gamma 2}}k({x_1},{k_2}) + ... + {\alpha _{\gamma N}}k({x_1},{k_N})) + {\alpha _{\gamma 2}}({\alpha _{\gamma 1}}k({x_1},{k_1}) + {\alpha _{\gamma 2}}k({x_1},{k_2}) + ... + {\alpha _{\gamma N}}k({x_1},{k_N})) + ... + {\alpha _{\gamma N}}({\alpha _{\gamma 1}}k({x_1},{k_1}) + {\alpha _{\gamma 2}}k({x_1},{k_2}) + ... + {\alpha _{\gamma N}}k({x_1},{k_N})) i=1Nj=1Nαγiαγjk(xi,kj)=αγ1(αγ1k(x1,k1)+αγ2k(x1,k2)+...+αγNk(x1,kN))+αγ2(αγ1k(x1,k1)+αγ2k(x1,k2)+...+αγNk(x1,kN))+...+αγN(αγ1k(x1,k1)+αγ2k(x1,k2)+...+αγNk(x1,kN))
将后面的求和写成矩阵形式

右 式 = [ α γ 1 α γ 2 . . . α γ N ] [ [ α γ 1 α γ 2 . . . α γ N ] [ k ( x 1 , x 1 ) k ( x 1 , x 2 ) . . . k ( x 1 x N ) ] [ α γ 1 α γ 2 . . . α γ N ] [ k ( x 2 , x 1 ) k ( x 2 , x 2 ) . . . k ( x 2 x N ) ] . . . [ α γ 1 α γ 2 . . . α γ N ] [ k ( x N , x 1 ) k ( x N , x 2 ) . . . k ( x N x N ) ] ] = [ [ α γ 1 α γ 2 . . . α γ N ] ] [ k ( x 1 , x 1 ) k ( x 1 , x 2 ) . . . k ( x 1 , x N ) k ( x 2 , x 1 ) k ( x 2 , x 2 ) . . . k ( x 2 , x N ) . . . . . . . . . . . . k ( x N , x 1 ) k ( x N , x 2 ) . . . k ( x N , x N ) ] [ α γ 1 α γ 2 . . . α γ N ] = α γ T K α γ 右式= \begin{bmatrix}{{\alpha _{\gamma 1}}}&{{\alpha _{\gamma 2}}}&{...}&{{\alpha _{\gamma N}}}\end{bmatrix} \begin{bmatrix} {\begin{bmatrix} {{\alpha _{\gamma 1}}}&{{\alpha _{\gamma 2}}}&{...}&{{\alpha _{\gamma N}}} \end{bmatrix} \begin{bmatrix} {k({x_1},{x_1})}\\ {k({x_1},{x_2})}\\ {...}\\ {k({x_1}{x_N})} \end{bmatrix}}\\ {\begin{bmatrix} {{\alpha _{\gamma 1}}}&{{\alpha _{\gamma 2}}}&{...}&{{\alpha _{\gamma N}}} \end{bmatrix} \begin{bmatrix} {k({x_2},{x_1})}\\ {k({x_2},{x_2})}\\ {...}\\ {k({x_2}{x_N})} \end{bmatrix}}\\ {...}\\ {\begin{bmatrix} {{\alpha _{\gamma 1}}}&{{\alpha _{\gamma 2}}}&{...}&{{\alpha _{\gamma N}}} \end{bmatrix} \begin{bmatrix} {k({x_N},{x_1})}\\ {k({x_N},{x_2})}\\ {...}\\ {k({x_N}{x_N})} \end{bmatrix}} \end{bmatrix}\\ = \left[ {\begin{bmatrix} {{\alpha _{\gamma 1}}}&{{\alpha _{\gamma 2}}}&{...}&{{\alpha _{\gamma N}}} \end{bmatrix}} \right] \begin{bmatrix} {k({x_1},{x_1})}&{k({x_1},{x_2})}&{...}&{k({x_1},{x_N})}\\ {k({x_2},{x_1})}&{k({x_2},{x_2})}&{...}&{k({x_2},{x_N})}\\ {...}&{...}&{...}&{...}\\ {k({x_N},{x_1})}&{k({x_N},{x_2})}&{...}&{k({x_N},{x_N})} \end{bmatrix} \begin{bmatrix} {{\alpha _{\gamma 1}}}\\ {{\alpha _{\gamma 2}}}\\ {...}\\ {{\alpha _{\gamma N}}} \end{bmatrix}\\ =\alpha {\gamma ^T}K{\alpha _\gamma } =[αγ1αγ2...αγN][αγ1αγ2...αγN]k(x1,x1)k(x1,x2)...k(x1xN)[αγ1αγ2...αγN]k(x2,x1)k(x2,x2)...k(x2xN)...[αγ1αγ2...αγN]k(xN,x1)k(xN,x2)...k(xNxN)=[[αγ1αγ2...αγN]]k(x1,x1)k(x2,x1)...k(xN,x1)k(x1,x2)k(x2,x2)...k(xN,x2)............k(x1,xN)k(x2,xN)...k(xN,xN)αγ1αγ2...αγN=αγTKαγ


2 类似归一化的推导

已知
α γ T α γ = 1 λ γ \alpha_\gamma^T \alpha_\gamma=\frac{1}{{{\lambda _\gamma }}} αγTαγ=λγ1
因为 α γ = [ x 1 , x 2 , . . . , x N ] T \alpha_\gamma=[x_1,x_2,...,x_N]^T αγ=[x1,x2,...,xN]T,它本身并没有归一化,即 α γ T α γ ≠ 1 λ γ \alpha_\gamma^T \alpha_\gamma \ne \frac{1}{{{\lambda _\gamma }}} αγTαγ=λγ1,需要重新找到一个向量 β γ = [ x 1 ′ , x 2 ′ , . . . , x N ′ ] \beta_\gamma=[x'_1,x'_2,...,x'_N] βγ=[x1,x2,...,xN]满足 β γ T β γ = 1 λ γ \beta_\gamma^T \beta_\gamma=\frac{1}{{{\lambda _\gamma }}} βγTβγ=λγ1,并且满足以下条件,那么
x ′ 1 x 1 = x ′ 2 x 2 = . . . = x ′ N x N = k \frac{{{{x'}_1}}}{{{x_1}}} = \frac{{{{x'}_2}}}{{{x_2}}} = ... = \frac{{{{x'}_N}}}{{{x_N}}} = k x1x1=x2x2=...=xNxN=k
综上所述:
{ β γ T β γ = x ′ 1 2 + x ′ 2 2 + . . . + x ′ N 2 = 1 λ γ x ′ 1 = k x 1 x ′ 2 = k x 2 . . . x ′ N = k x N \left\{ \begin{array}{l} \beta _\gamma ^T{\beta _\gamma } = {{x'}_1}^2 + {{x'}_2}^2 + ... + {{x'}_N}^2 = \frac{1}{{{\lambda _\gamma }}}\\ {{x'}_1} = k{x_1}\\ {{x'}_2} = k{x_2}\\ ...\\ {{x'}_N} = k{x_N} \end{array} \right. βγTβγ=x12+x22+...+xN2=λγ1x1=kx1x2=kx2...xN=kxN
进行求解
{ x ′ 1 = x 1 λ γ ( x 1 2 + x 2 2 + . . . + x N 2 ) x ′ 2 = x 2 λ γ ( x 1 2 + x 2 2 + . . . + x N 2 ) . . . x ′ N = x N λ γ ( x 1 2 + x 2 2 + . . . + x N 2 ) \left\{ \begin{array}{l} {{x'}_1} = \frac{{{x_1}}}{{\sqrt {\lambda_\gamma ({x_1}^2 + {x_2}^2 + ... + {x_N}^2)} }}\\ {{x'}_2} = \frac{{{x_2}}}{{\sqrt {\lambda_\gamma ({x_1}^2 + {x_2}^2 + ... + {x_N}^2)} }}\\ ...\\ {{x'}_N} = \frac{{{x_N}}}{{\sqrt {\lambda_\gamma ({x_1}^2 + {x_2}^2 + ... + {x_N}^2)} }} \end{array} \right. x1=λγ(x12+x22+...+xN2) x1x2=λγ(x12+x22+...+xN2) x2...xN=λγ(x12+x22+...+xN2) xN
此时 β γ = [ x 1 ′ , x 2 ′ , . . . , x N ′ ] \beta_\gamma=[x'_1,x'_2,...,x'_N] βγ=[x1,x2,...,xN]就是类似归一化的结果 α γ \alpha_\gamma αγ


3.证明

k ( x i , x j ) − 1 N ∑ k = 1 N k ( x i , x k ) − 1 N ∑ k = 1 N k ( x j , x k ) + 1 N 2 ∑ k = 1 N ∑ l = 1 N k ( x k , x l ) = K − 2 T 1 N K + T 1 N K T 1 N k({x_i},{x_j}) - \frac{1}{N}\sum\limits_{k = 1}^N {k({x_i},{x_k}) - \frac{1}{N}\sum\limits_{k = 1}^N {k({x_j},{x_k}) + \frac{1}{{{N^2}}}\sum\limits_{k = 1}^N {\sum\limits_{l = 1}^N {k({x_k},{x_l})} } } }= K - 2{T_{\frac{1}{N}}}K + {T_{\frac{1}{N}}}K{T_{\frac{1}{N}}} k(xi,xj)N1k=1Nk(xi,xk)N1k=1Nk(xj,xk)+N21k=1Nl=1Nk(xk,xl)=K2TN1K+TN1KTN1

先引入一个性质
[ k 11 k 12 k 13 k 21 k 22 k 23 k 31 k 32 k 33 ] [ 1 1 1 1 1 1 1 1 1 ] = [ k 11 + k 12 + k 13 k 11 + k 12 + k 13 k 11 + k 12 + k 13 k 21 + k 22 + k 23 k 21 + k 22 + k 23 k 21 + k 22 + k 23 k 31 + k 32 + k 33 k 31 + k 32 + k 33 k 31 + k 32 + k 33 ] \begin{bmatrix} {{k_{11}}}&{{k_{12}}}&{{k_{13}}}\\ {{k_{21}}}&{{k_{22}}}&{{k_{23}}}\\ {{k_{31}}}&{{k_{32}}}&{{k_{33}}} \end{bmatrix} \begin{bmatrix} 1&1&1\\ 1&1&1\\ 1&1&1 \end{bmatrix} = \begin{bmatrix} {{k_{11}} + {k_{12}} + {k_{13}}}&{{k_{11}} + {k_{12}} + {k_{13}}}&{{k_{11}} + {k_{12}} + {k_{13}}}\\ {{k_{21}} + {k_{22}} + {k_{23}}}&{{k_{21}} + {k_{22}} + {k_{23}}}&{{k_{21}} + {k_{22}} + {k_{23}}}\\ {{k_{31}} + {k_{32}} + {k_{33}}}&{{k_{31}} + {k_{32}} + {k_{33}}}&{{k_{31}} + {k_{32}} + {k_{33}}} \end{bmatrix} k11k21k31k12k22k32k13k23k33111111111=k11+k12+k13k21+k22+k23k31+k32+k33k11+k12+k13k21+k22+k23k31+k32+k33k11+k12+k13k21+k22+k23k31+k32+k33
即当一个矩阵K1矩阵进行右乘时 K ∗ 1 K*1 K1,得到的矩阵,每一行都是K矩阵对应那一行所有元素之和;同理可以得到,当进行左乘时 1 ∗ K 1*K 1K,得到的矩阵,每一列都是每一列都是K矩阵对应那一列所有元素之和;当进行 1 ∗ K ∗ 1 1*K*1 1K1,矩阵的每一个元素均是原先K矩阵所有元素之和。

通过以上性质,将左式的求和公式展开,即:
1 N ∑ k = 1 N k ( x i , x k ) → K ∗ 1 N 矩 阵 1 N ∑ k = 1 N k ( x j , x k ) → 1 N 矩 阵 ∗ K 1 N 2 ∑ k = 1 N ∑ l = 1 N k ( x k , x l ) → 1 N 矩 阵 ∗ K ∗ 1 N 矩 阵 \frac{1}{N}\sum\limits_{k = 1}^N {k({x_i},{x_k})} \to K*\frac{1}{N}矩阵\\ \frac{1}{N}\sum\limits_{k = 1}^N {k({x_j},{x_k})} \to \frac{1}{N}矩阵*K\\ \frac{1}{{{N^2}}}\sum\limits_{k = 1}^N {\sum\limits_{l = 1}^N {k({x_k},{x_l})} } \to \frac{1}{N}矩阵*K*\frac{1}{N}矩阵 N1k=1Nk(xi,xk)KN1N1k=1Nk(xj,xk)N1KN21k=1Nl=1Nk(xk,xl)N1KN1
最后在合并即可,其中 1 N \frac{1}{N} N1矩阵表示 N × N N \times N N×N,所有元素均为1的矩阵。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值