博弈论之尼姆博弈

尼姆博弈中,当三堆物品的异或和为0时,先手必败;反之,先手必胜。先手可以通过选择合适的数量取物品,使后手面临相同局面。推广到n堆物品,结论保持不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

尼姆博弈

有三堆分别有 a,b,c 个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

结论

当 a ⊕ b ⊕ c == 0 时,先手必败;
反之,先手必胜。

理解

对于 a,b,c 三个数,我先假设 a 最大, b 第二大, c 最小,且 a,b,c 对应的二进制位数分别为 x,y,z
那么,要使得 a ⊕ b ⊕ c == 0,就得满足以下条件( a,b,c 的二进制形式都没有前导零的情况下):

(1) a 和 b 的二进制位数要一致,且 c 的二进制位数要小于 x,否则通过异或运算,不可能得到 a ⊕ b ⊕ c == 0,即 x == y 且 x > z 恒成立
(2)对于 a 和 b 的二进制形式下, a 和 b 的二级制数值从第 z+1 位到第 x 位要保持一致,否则不可能得到 a ⊕ b ⊕ c == 0

假设 a,b,c 分别对应第 1,2,3 堆
当 a ⊕ b ⊕ c == 0 时
先手先从第 1 堆里面取 k1 个物品


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值