Leetcode 452 用最少数量的箭引爆气球
问题重述
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
示例 1:
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:
输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
思路
本题解法和435类似,不同的是本题是将给定数组,
按照每一对坐标的start坐标进行增序排序。贪心策略,计算区间不重叠的数量。如果 后一个数的start > 前一个数的end,比如说[2,3] [4,5],4 > 3 所以没有重叠区间。即 poins[i][0] > points[i-1][1] 那么说明这两个区间不重叠,需要两支箭。如果区间重叠每一次定义prev记录重叠区间的最小的end,即prev=min(prev,points.[i][0])。
最终代码
class Solution {
public:
int findMinArrowShots(vector<vector<int>>& points) {
int n = points.size();
if(n == 1) return 1;
if(n == 0) return 0;
sort(points.begin(), points.end(), [](vector<int> a, vector<int> b) {
return a[0] < b[0];
}); //按照坐标的start进行增序排序
int total = 1, sum = 1, prev = points[0][1];
for (int i = 1; i < n; i++) {
if (points[i][0] <= prev ){
prev = min(points[i][1],prev);
}
else {
prev = points[i][1];
sum++;
}
}
return sum;
}
};