小罗碎碎念
在上个月我总结了40余个适合医工交叉领域投稿的期刊,在这期推送中,我将介绍90+适合医工交叉研究投稿的一区期刊!
与上次方式一致,我会分区进行介绍,每个区则会进一步划分学科种类,方便大家选择适合自己的投稿期刊。
表格速览
这份表格汇总了医学、生物学、计算机科学等领域的1区期刊,涵盖肿瘤学、神经科学、胃肠肝病学、人工智能(AI)等多个细分方向。
其中,医学AI研究者需重点关注交叉学科期刊,如《Nature Machine Intelligence》(IF 18.8)、《Med Image Anal》(IF 10.7)和《IEEE Trans Med Imaging》(IF 8.9),这些期刊聚焦AI在医学影像、算法开发及工程化应用,是技术落地的核心发表平台。
综合性顶刊如《Nature》《Science》同样对跨学科AI研究持开放态度。
影响因子与趋势分析
期刊影响因子(IF)差异显著,肿瘤学顶刊《Nature Reviews Clinical Oncology》以IF 81.1(↑2.3)领跑,适合AI驱动的个性化治疗研究;传统顶刊《Lancet》(IF 98.4)虽IF下降明显,但仍为临床决策AI研究提供高影响力出口。
需警惕部分期刊的小类分区陷阱,如《NPJ Precis Oncol》《Semin Cancer Biol》虽属1区医学大类,但小类标注为2区肿瘤学,竞争力较弱。
上升期期刊如《Nature Cancer》(IF 23.5↑0.8)投稿竞争压力较小,值得关注。
投稿策略建议
优先选择IF稳中有升的期刊(如《Eur Urol》IF 25.3↑1.9),并善用跨学科优势,例如将AI模型与胃肠肝病学(《Gut》IF 23.0)或心血管系统(《Eur Heart J》IF 37.6)结合。
避开肿瘤学“红海”,转向免疫治疗、病理组学等细分方向。注意期刊多小类归属,如《Biosens Bioelectron》虽涉足生物工程,但偏重技术而非临床,需谨慎匹配研究方向。
投稿前务必核实期刊官网要求,确保内容与小类分区精准契合。
线下交流会
周六会前往沈阳,所以打算试点举办一个线下粉丝交流会,大家就是一起聊聊天,互相认识一下,如果投缘的话,说不定还能联系到工科生,或者给自己找到临床数据。
另外,如果还没提交标书的老师,也可以找我参谋参谋,帮忙完善一下。课题设计存在疑惑的,我们也可以现场讨论一下,共同学习!
如果你想参加的话,欢迎在后台私信!
交流群
欢迎大家加入【医学AI】交流群,本群设立的初衷是提供交流平台,方便大家后续课题合作。
目前小罗全平台关注量52,000+
,交流群总成员1100+
,大部分来自国内外顶尖院校/医院,期待您的加入!!
由于近期入群推销人员较多,已开启入群验证,扫码添加我的联系方式,备注姓名-单位-科室/专业
,即可邀您入群。
知识星球
如需获取推文中提及的各种资料,欢迎加入我的知识星球!
数据整理不易,为防止被盗用,期刊汇总表格将以高清图片的形式分享,大家可以付费阅读,也可以直接前往知识星球获取!
感谢大家的理解与支持!
一、医学AI研究者的黄金赛道:这些期刊不可错过
-
《Nature Machine Intelligence》
- IF 18.8(↓5.0)
- 小类:计算机-人工智能、跨学科应用
- 亮点:专注于AI与医学交叉,是算法开发与临床转化研究的首选顶刊。
-
《Med Image Anal》
- IF 10.7(↓0.2)
- 小类:计算机-人工智能、生物医学工程
- 亮点:医学影像分析领域的标杆期刊,覆盖AI驱动的影像诊断与分割技术。
-
《IEEE Trans Med Imaging》
- IF 8.9(↓1.7)
- 小类:跨学科应用、生物医学工程、核医学
- 亮点:工程与医学融合的典范,适合AI医学影像硬件与算法结合的研究。
二、医学顶刊中的“AI友好型”选手
-
《The Lancet Digital Health》
- IF 23.8(↓7.0)
- 小类:医学信息学、内科
- 潜力:聚焦数字化医疗与AI辅助诊断,政策与技术创新并重。
-
《npj Digital Medicine》
- IF 12.4(↓2.8)
- 小类:卫生服务、医学信息学
- 优势:开放获取模式,青睐AI在远程医疗、健康大数据中的落地应用。
-
《Science Advances》
- IF 11.7(↓1.9)
- 大类:综合性期刊
- 适配方向:跨学科AI研究(如基因组学+机器学习)。
三、高IF王者期刊:医学研究的“天花板”
- 《Nature Reviews Clinical Oncology》
IF 81.1(↑2.3),肿瘤学顶刊,AI驱动的个性化治疗可尝试投递。 - 《Lancet》
IF 98.4(↓70.5),综合医学权威,AI辅助临床决策研究或能突围。 - 《Cell》
IF 45.5(↓19.0),生医交叉领域的“硬通货”,AI+分子机制研究潜力巨大。
四、投稿策略:趋势与技巧
- 关注IF上升期刊:
- 《Nature Cancer》(IF 23.5↑0.8)、《Eur Urol》(IF 25.3↑1.9)等上升期期刊,竞争压力相对较小。
- 跨学科“借势”:
- 例如将AI模型应用于胃肠肝病学(《Gut》,IF 23.0)或心血管系统(《Eur Heart J》,IF 37.6),可借力传统顶刊的学科优势。
- 避开“内卷”红海:
- 肿瘤学期刊数量庞大(如《J Clin Oncol》《Cancer Cell》),建议结合细分方向(如免疫治疗、影像组学)差异化突破。
五、数据获取
如需获取数据,请前往公众号或者知识星球。
结束语
本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!