- 博客(1490)
- 资源 (5)
- 收藏
- 关注
原创 AI技术在医疗器械领域的应用前景如何?
AI技术正推动医疗器械从“功能型设备”向“智能型系统”跃迁,其前景不仅体现在市场规模的几何级增长,更在于对医疗服务模式的根本性重构。未来十年,随着多模态大模型、物理AI、边缘计算等技术的深度融合,AI医疗器械将在精准诊疗、普惠医疗、健康管理三大领域实现规模化应用,成为健康中国战略的核心支撑。然而,技术发展必须与伦理治理同步,通过数据安全框架、责任分担机制和临床验证体系的完善,方能确保AI在医疗领域的可持续创新。
2025-11-01 05:55:29
869
原创 医疗器械领域的AI技术应用,在发展过程中面临哪些技术挑战?
医疗器械领域的AI技术突破,本质上是一场“精度-效率-安全”的三角博弈。从技术层面看,联邦学习、可解释性算法、边缘计算等虽提供解决方案,但需在隐私保护与模型性能间建立动态平衡;从生态层面看,跨机构数据协作、多中心临床试验、标准化接口开发等系统性工程,将决定AI医疗能否从“单点突破”走向“全域赋能”。未来的技术创新,不仅需要算法的迭代,更需构建“技术-伦理-监管”三位一体的协同体系,才能真正实现AI在医疗场景中的安全落地与价值释放。
2025-10-31 11:52:16
523
原创 目录体系分类原则扩展性预留30%的分类空间是什么意思
空间预留的量化标准若当前目录体系规划了100个分类项,则需预留30个空白分类(100×30%),用于后续新增内容的归类。预留方式可以是:层级预留:在现有分类层级中(如一级分类、二级分类),保留未使用的类别名称或编码(如“其他类”“待扩展类”)。编码预留:采用可扩展的编码规则(如数字或字母递增编码),为未来新增分类预留编码区间(例如当前编码到“099”,则“100-199”作为预留段)。扩展性的本质目录体系的分类不是静态的,而是需要适应业务发展、内容迭代或需求变化。
2025-10-26 07:29:08
449
原创 知识管理中的向量化模型是什么?
向量化模型是知识管理从“符号检索”迈向“语义智能”的核心技术,其通过数学建模将知识转化为可计算的向量空间,使机器能够理解知识的语义关联。在企业实践中,需根据知识类型(文本/图谱/多模态)、应用场景(检索/推荐/推理)选择适配的模型,并结合领域数据持续优化。未来,随着大模型与边缘计算的发展,向量化技术将进一步推动知识管理向“自进化、低门槛”方向演进。
2025-10-25 05:50:08
594
原创 从Web到最终实现PDF解析接口的全流程
通过以上流程,可实现从Web端接收PDF,经存储、解析、AI增强后,最终通过标准化接口返回解析结果,满足文本提取、结构化分析等需求。
2025-10-24 07:36:30
585
原创 智能知识库问答与向量库和mongodb数据库调用逻辑
在智能知识库问答系统中,结合向量库(用于语义检索)和 MongoDB(用于存储结构化/非结构化数据)的调用逻辑,通常需要分步骤实现“数据预处理→检索→增强→生成”的流程。系统的核心目标是:通过向量库快速找到与用户问题语义相似的“候选知识”,再结合 MongoDB 中存储的完整知识细节,最终生成精准回答。通过以上逻辑,系统既能利用向量库的语义检索能力快速定位相关知识,又能通过 MongoDB 灵活存储和获取完整的知识细节,最终实现精准的智能问答。
2025-10-23 08:59:00
246
原创 知识库目录结构分级事项
知识库的层级设计以“3-5级”为主流,核心是平衡“分类清晰度”和“用户查找效率”。具体层级需根据知识规模、复杂度及工具特性调整,避免教条化——
2025-10-22 07:38:10
1044
原创 财政业务知识库构建流程图二
以下是财政业务知识库构建的标准化流程图及关键步骤说明,适用于政府/企业财政信息化建设:fill:#333;color:#333;color:#333;fill:none;启动阶段需求分析业务部门访谈政策法规梳理现有知识资产盘点知识体系设计知识领域划分预算-国库-税收-采购等知识本体建模元数据标准制定知识采集结构化数据业务系统-数据库半结构化文档政策文件-报表非结构化数据会议纪要-案例知识加工文本清洗信息抽取实体-关系知识标引质量校验知识存储图数据库。
2025-10-21 06:55:11
699
原创 财政业务知识库实现原理
财政业务知识库的实现原理基于,核心是通过数字化手段整合、存储、管理和应用财政领域的知识资源,提升财政工作的规范性、效率性和决策科学性。
2025-10-20 09:55:34
682
原创 如何使用DeepSeek构建财政业务知识库一
将DeepSeek(如R1版本)部署在财政内网环境,通过私有化部署保障数据安全。对接财政业务系统(如预算管理、国库支付系统)的API接口,实时同步结构化数据(如预算指标、支付记录)。
2025-10-19 07:44:11
175
原创 如何使用DeepSeek构建财政业务知识库二
通过以上方案,某市财政局上线类似系统后实现了:政策查询响应时间从平均2小时降至20秒,业务培训成本降低40%。建议初期聚焦高频场景(如“差旅费报销标准查询”),快速验证效果后再扩展复杂功能。构建基于DeepSeek的财政业务知识库是一个高效实现政策查询、业务辅助和智能决策的方案。用户问:“2024年小微企业增值税优惠政策有哪些?DeepSeek生成答案。
2025-10-18 00:08:54
958
原创 对deepseep测试报告要点内容
通过此报告可快速定位系统薄弱点,确保知识库在财政场景中的专业性与稳定性。:系统满足财政核心业务需求,准予上线,需持续迭代术语库与表格处理能力。:方言术语需加入同义词库(如“借钱”→ “发债”):报告生成任务加入异步队列。
2025-10-17 03:33:08
599
原创 如何按政策层级与业务关联双维度交叉分类
这种分类方法的核心是“双向定位”:纵向锁定政策的行政层级(效力范围),横向锁定政策的业务关联(适用场景),最终通过交叉形成精细化的分类标签,为政策梳理、执行、评估提供清晰的框架。实际应用中,可根据具体需求调整两个维度的细分标准(如层级细化到乡镇级,业务关联细化到具体岗位)。
2025-10-15 00:03:25
801
原创 一些财政政策类知识库目录划分的优秀案例
双维度交叉是核心:如IMF的“功能+经济”分类、欧盟的“层级+领域”分类,均通过交叉维度提升政策定位的精准性。用户需求导向:深圳、上海等地的分类注重政务公开与企业申报流程,世界银行OKR则强化开放获取与数据互操作。动态调整机制:嘉兴海宁财政通过绩效评价优化政策目录,凉山州结合产业周期更新专项补贴,体现灵活性。技术赋能分类:中央财经大学数据库融合文本挖掘与计量分析,OECD提供税收模拟工具,提升政策分析深度。
2025-10-14 07:44:41
580
原创 Rerank模型介绍
Rerank模型是一种用于优化信息检索结果排序的机器学习模型,通过精细化评估文档与查询的相关性,提升最终结果的准确性和语义匹配度。
2025-10-13 08:15:58
459
原创 Embedding模型介绍
Embedding模型(嵌入模型)是将文本、图像、音频等非结构化数据转化为低维稠密向量(Embedding向量)的模型,通过捕捉数据的语义信息,实现跨模态或同模态数据的相似度计算,是自然语言处理(NLP)、信息检索、推荐系统等领域的核心技术之一。:针对不同数据类型进行预处理:通过神经网络(如Transformer、CNN、RNN等)将输入映射到低维空间,向量维度通常为768、1024等(可根据需求调整)。模型训练的目标是让语义相关的数据在向量空间中距离更近,无关数据距离更远。
2025-10-11 07:35:30
303
原创 什么是鲁棒性
鲁棒性”指系统或算法在面对干扰、错误或异常情况时,仍能保持稳定运行和正常功能的能力,简单说就是“抗干扰能力”。这个概念最初源于工程领域,如今已广泛应用于计算机科学、统计学、生物学等多个领域,核心是衡量系统的稳定性和可靠性。
2025-10-10 07:48:47
898
原创 如何衡量一个系统的鲁棒性?
衡量系统鲁棒性没有统一标准,核心是通过,测试系统在不同压力下的表现,最终用定量指标或定性结果评估其抗干扰能力。不同领域的系统(如软件、机械、生物),衡量方法差异较大,但核心逻辑都是“制造麻烦,看系统反应”。
2025-10-09 18:46:04
449
原创 什么是知识库的幻觉率
知识库的“幻觉率”(Hallucination Rate)是指在基于知识库的问答、信息检索或智能交互中,系统生成的回答中包含的比例。简单来说,就是系统“编造”信息的概率。这一概念源于自然语言处理(NLP)和人工智能领域,尤其在大语言模型(LLM)与知识库结合的场景中被频繁提及。当系统无法从知识库中找到准确答案时,可能会基于训练数据或自身逻辑“推测”出一个看似合理但错误的结果,这种情况就被称为“幻觉”,而幻觉率则是衡量这种错误发生频率的指标。
2025-10-08 00:22:35
378
原创 如何评估知识库的幻觉率?
评估知识库的幻觉率,核心是通过,量化系统生成回答中“无依据虚假信息”的占比。由于幻觉的隐蔽性(尤其在专业领域如财政业务中,错误可能伪装成专业表述),评估需结合和。
2025-10-07 10:36:57
806
原创 降低知识库幻觉率的方法有哪些?
公开知识库范围:在系统首页说明知识库的覆盖范围(如“涵盖2020年至今中央及省级财政政策,不含市级以下未公开文件”),让用户知晓系统的能力边界。“未知”回答标准化:对超出范围的问题,统一回复“当前知识库暂未收录相关信息,建议咨询当地财政部门或参考《XX指引》”,避免编造“可能正确”的答案。降低幻觉率的核心逻辑是“让系统‘有依据才说,无依据不说,说的必可追溯’”:数据层确保“有依据”,检索与生成层确保“说的是依据”,交互与审核层确保“错了能修正”。
2025-10-06 07:41:34
1305
原创 有哪些技术可以用于检测知识库中的幻觉信息?
对结构化知识图谱:优先用知识嵌入异常检测 + 逻辑一致性检测;对非结构化文本:优先用上下文一致性分析 + LLMs自验证;对高敏感领域(如财政政策):必须叠加事实核查 + 人机协同验证。通过多技术协同,可大幅提升幻觉信息的检出率,为知识库的准确性提供保障。
2025-10-05 06:41:13
637
原创 什么是财政全场景用户
财政全场景用户是指在财政管理的全流程、多场景中,存在多样化财政需求并通过财政系统、工具或服务获得支持的主体。这些主体覆盖财政活动的各个参与方,其需求贯穿财政资金的“收、支、管、监”等全环节,涉及不同场景下的财政业务交互。
2025-10-03 06:09:04
509
原创 财政业务知识库构建流程图一
财政业务知识库的构建需结合财政工作的专业性、政策性和流程性特点,兼顾“政策合规性”“业务关联性”“用户实用性”三大核心需求。(按“全流程闭环”设计,分8个核心阶段,含关键节点与输出物):《知识分类体系表》《核心知识清单(含来源与权限)》:《需求清单(内/外部用户)》《知识范围界定目录》阶段一:前期准备与目标定位<<循环优化>>输出:<知识分类体系><核心知识清单>输出:<需求清单><知识范围目录>输出:<目录结构蓝图><权限矩阵>输出:<运维日志><更新清单>阶段三:知识梳理与分类标准制定。
2025-10-02 06:32:04
821
原创 jmeter如何把数据放到聚合报告中
在JMeter中,聚合报告(Aggregate Report)是一款常用的监听器,用于汇总展示测试结果的关键统计数据(如样本数、平均值、90%响应时间等)。要让数据显示在聚合报告中,核心是确保测试计划中包含。
2025-09-30 02:25:01
391
原创 JMeter聚合报告中如何增加其他字段数据
如果需要长期默认显示某些字段,或调整字段的显示顺序,可以修改JMeter的配置文件找到配置文件进入JMeter安装目录下的bin文件夹,找到文件(用记事本或编辑器打开)。搜索聚合报告相关配置搜索关键词# 聚合报告的列名(显示在表头)# 聚合报告的列对应的内部变量(顺序需与列名对应)修改配置添加字段若需要添加某字段,只需在和中按顺序加入对应的列名和变量(两者顺序必须一致)。例如,默认已包含95% Line和99% Line,若之前未显示,确保这两个字段在配置中存在即可。
2025-09-29 00:04:51
908
原创 大模型性能测试工具
好的,关于大模型性能测试工具,这是一个非常重要且活跃的领域。随着“百模大战”的展开,如何科学、全面地评估大语言模型(LLM)的能力变得至关重要。和。
2025-09-27 01:05:34
995
原创 llm-benchmark安装详情
好的,以下是关于的详细安装和使用指南。是一个专为大语言模型(LLM)设计的并发性能测试工具,主要用于评估本地部署或 API 形式的 LLM 服务在高并发请求下的性能表现,例如吞吐量(RPS/TPS)、延迟(Latency)、P99 等关键指标。
2025-09-26 06:00:46
486
原创 llm-benchmark如何进行并发性能测试
好的,我们来详细说明如何使用进行大语言模型(LLM)的并发性能测试。的核心功能就是模拟多个用户向 LLM 服务发送请求,通过测量关键性能指标来评估服务在高并发下的表现。
2025-09-25 02:25:25
1112
原创 如何配置测试环境以模拟生产负载?
配置测试环境以模拟生产负载是确保大模型服务在上线后能够稳定、高效运行的关键步骤。这不仅仅是运行一个简单的压力测试,而是要尽可能真实地复现生产环境中的各种复杂情况。
2025-09-24 06:09:29
954
原创 具体多长的文本就属于长文本
这是最核心的判断标准。一个文本是否“长”,主要看它相对于目标模型的最大上下文长度的比例。模型上下文长度什么长度算“长文本”?说明4K tokens在早期模型(如 GPT-3)时代,超过 2000 tokens 就算很长了。如 Llama 2-70B (4K), Llama 2-70B (可扩展到 32K), GPT-3.5 (16K)。超过一半上下文长度即为长文本。如 Claude 2, GPT-4 (32K), 许多基于 Llama 2 微调的模型。如 Claude 2.1, Gemini Pro。
2025-09-22 03:18:46
639
原创 什么是QA+
无论在哪个行业,“QA+”的核心都是**“突破传统QA的边界,将质量保障从‘单一环节/单一维度’扩展到‘全流程/多维度’”**——不再是“被动检验质量”,而是“主动整合技术、业务、数据、合规等能力,从源头预防风险、提升质量,并最终对齐业务目标(如用户体验、商业价值、安全合规)”。若需更精准的解读,需结合具体行业(如“软件QA+”“医药QA+”)或企业内部的定义来进一步分析。
2025-09-21 05:38:15
829
原创 jmeter如何测试大模型性能
使用测试大语言模型(LLM)的性能是一种有效的方法,尤其适合评估部署在 Web 服务器上的 LLM API 服务在高并发下的表现。JMeter 作为一个强大的负载测试工具,可以模拟大量用户并发请求,测量吞吐量、延迟、错误率等关键指标。
2025-09-20 04:50:20
403
基于若依自动生成代码实现多数据源菜单切换
2024-10-02
主从数据源基础上增加数据源的切换
2024-10-01
若依框架自动生成代码的步骤、使用的脚本和自动生成的代码
2024-09-30
distrowatch排名第三的linux系统EndeavourOS安装笔记
2024-07-31
详细介绍MongoDB与Vue结合的具体步骤
2024-10-27
部署基于Gitlab+Docker+Rancher+Harbor的前端项目
2024-10-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅