- 博客(1432)
- 资源 (5)
- 收藏
- 关注
原创 RPS与总吞吐量
定义系统在单位时间(1秒)内成功接收并开始处理的请求数量,通常用于衡量接口/资源的访问压力。关注点:仅统计“请求的发起次数”,不关心请求是否完成或数据量大小。例如:用户每秒调用100次“查询商品”API,无论返回数据是1KB还是1MB,RPS均计为100。单位:请求数/秒(如200 RPSRPS是“局部指标”聚焦单一接口/资源的请求频率,适合定位具体模块的性能瓶颈(如:某API响应慢导致RPS下降)。总吞吐量是“全局指标”
2025-08-30 04:49:56
708
原创 什么是弹性IP
弹性 IP 的本质是云服务商提供的“可独立持有、灵活调度的公网 IP 资源”脱离具体云资源(如云服务器实例)存在,即使绑定的服务器销毁,弹性 IP 仍可保留(需手动释放或按规则回收);支持在同一云账号、同一地域内,快速绑定到不同的云资源(如服务器、负载均衡器、NAT 网关等),实现 IP 地址的“复用”和“漂移”。例如:你有一台云服务器 A,绑定了弹性 IP;
2025-08-29 04:48:20
725
原创 Qwen3-32B属于大模型吗?
320亿参数的基准定位Qwen3-32B的名称中“32B”明确指代其拥有320亿个可训练参数,这一规模远超学术界和工业界对大模型的最低阈值(通常为100亿参数)。对比开源标杆Llama 2,其70B版本(700亿参数)被广泛认可为大模型,而Qwen3-32B的参数规模已达到其45%。在通义千问系列中,32B与前代72B模型同属大模型范畴,仅在参数量级上存在差异。参数设计的技术意义复杂语义表征能力:可捕捉自然语言中的长距离依赖关系(如32K上下文支持)。多模态扩展潜力。
2025-08-27 01:50:50
358
原创 jmeter中Average是否是load time的平均值
Load Time(加载时间)是JMeter对单个请求/事务的核心计时指标,官方定义为“从请求发出到客户端接收到响应的最后一个字节所消耗的总时间”(单位:毫秒)。它包含了网络传输时间、服务器处理时间、响应数据传输时间等完整链路耗时,是衡量单个请求性能的基础指标。Average(平均值)是对所有采样样本的Load Time进行算术平均计算的结果Average = 所有样本的Load Time总和 ÷ 样本总数。
2025-08-26 06:00:23
203
原创 jmeter如何使用脚本获取Load Time(加载时间)
在JMeter中,使用脚本获取主要依赖JMeter的内置API,通过访问采样结果(对象)实现。最常用的方式是通过(如JSR223 PostProcessor、JSR223 Listener)编写Groovy脚本,直接提取当前请求的加载时间。
2025-08-24 02:33:40
234
原创 lm-evaluation-harness简介
是由开发的开源框架,旨在为大型语言模型(LLMs)提供标准化、可复现的评估能力。它整合了超过,覆盖数百个子任务和变体,支持从基础语言理解到复杂推理的全维度评测。
2025-08-23 05:34:40
838
原创 医疗器械领域相关AI技术应用现状
从市场规模来看,据亿欧智库数据,2023年AI影像市场规模为24亿元,预计2030年达137.4亿元;AI医疗机器人方面,国内手术机器人虽处发展初期但前景良好,2023年该细分市场规模约为71.7亿元,预计2025年将达188.8亿元。随着技术的不断进步和政策的支持,AI技术在医疗器械领域的应用有望进一步拓展和深化。AI技术在医疗器械领域的应用正日益广泛和深入,涵盖影像诊断、手术操作、疾病筛查等多个方面,有力地推动了医疗行业的发展。
2025-08-22 02:59:40
226
原创 容器中的cpu和内存,与容器所在服务器的cpu和内存是什么关系
容器的CPU和内存是宿主机物理资源的“子集”来源上:完全依赖宿主机的物理CPU和内存,无法超越宿主机的总资源量;控制上:通过限制规则(如CGroup)约束容器的资源使用上限,避免过度占用;隔离上:逻辑隔离确保容器间互不干扰,但本质仍共享宿主机资源池。这种关系使得容器比虚拟机更轻量(无需虚拟硬件开销),但也对宿主机的资源管理提出了更高要求。
2025-08-20 04:10:02
410
原创 LangChain是什么
LangChain 是一个开源的框架,主要用于简化基于大语言模型(LLM,如 GPT、Claude 等)的应用程序开发。它的核心目标是帮助开发者更轻松地将大语言模型与其他工具、数据来源、API 等集成,从而构建出更复杂、更实用的 AI 应用。
2025-08-19 05:07:12
349
原创 如何使用LangChain?
使用LangChain构建应用通常遵循“安装依赖→选择组件→组合流程→运行调试”的步骤。代理会先调用维基百科获取地球直径(约12742公里),再用计算器计算12742/2,最终返回结果。如果使用其他模型(如Hugging Face、Google PaLM等),需安装对应依赖(如。通过组合上述组件,你可以快速搭建从简单对话到复杂智能助手的各类LLM应用。LangChain封装了各类模型的接口,可统一调用。
2025-08-18 07:31:09
675
原创 什么是知识库的相关性
在知识库系统(尤其是结合大语言模型的问答、检索场景中),指的是。简单来说,就是“知识库中的信息是否能有效回答用户的问题、满足用户的需求”。
2025-08-17 00:07:53
311
原创 Jmeter中Sample Time、Latency和Connect Time三个时间的作用和区别
定义:建立TCP连接所需的时间(仅针对需要建立连接的协议,如HTTP、TCP等)。计算范围:从客户端发起TCP连接请求(三次握手开始)到TCP连接完全建立(三次握手成功)的时间。特殊情况:若使用连接复用(如HTTP的Keep-Alive机制),后续请求可复用已建立的连接,此时为0。网络层问题(如连接慢)→ 关注Connect Time;服务器处理问题(如逻辑耗时)→ 关注Latency;端到端用户体验问题 → 关注Sample Time。
2025-08-15 05:43:10
455
原创 并发10个样本数据端到端延迟(E2E Latency)怎么计算
先获取每个样本独立的“请求开始到响应完成”时间;通过平均值、最大/最小、分位数等统计指标,反映并发场景下的整体性能和稳定性。这些指标结合起来,能更全面地评估系统在并发压力下的实际表现,而非单一数值。
2025-08-14 05:52:49
596
原创 deepseek提示词如何编写
编写有效的DeepSeek提示词(Prompt)需要结合其模型特性,清晰传达任务目标并引导出高质量结果。直接告诉模型要做什么,避免模糊表述。❌ 模糊:“写一篇关于环保的文章”✅ 明确:“以‘城市垃圾分类的3个关键措施’为主题,写一篇800字的说明文,面向社区居民,语言通俗易懂并包含具体案例”补充背景信息、约束条件或参考依据,帮助模型定位方向。例:“作为一名高中物理老师,请解释相对论中的‘时间膨胀’现象,要求结合卫星导航系统的实际应用,用3个生活化的比喻辅助说明”
2025-08-13 05:09:47
286
原创 TTFB(Time to First Byte)和 TTFT(Time to First Token)值大小对比
TTFB:指从客户端发送请求到接收到服务器返回的第一个字节的时间。这个“第一个字节”可能是 HTTP 响应头的起始字符(如的第一个字母),也可能是响应体的第一个字节,但本质是“字节级”的最小单位。TTFT:指从请求开始到接收到第一个有意义的“令牌(Token)”的时间。“Token”通常是一个完整的、可解析的数据单元(如 JSON 中的第一个键值对、HTML 中的第一个标签<div>、API 响应中的第一个有效数据片段等),是“语义级”的单位。
2025-08-12 05:03:39
306
原创 TTFB(Time to First Byte)和 TTFT(Time to First Token)的值一般差多少?
TTFB(Time to First Byte,首字节时间)和 TTFT(Time to First Token,首令牌时间)的差值通常在。
2025-08-11 07:03:46
507
原创 jmeter如何测试出TTFT
在JMeter中测试TTFT(Time to First Token)需要结合和,因为TTFT并非JMeter内置指标(JMeter默认提供TTFB等基础指标)。
2025-08-10 05:28:32
865
原创 什么是模拟 RAG 场景
模拟RAG(Retrieval-Augmented Generation,检索增强生成)场景是指通过技术手段复现真实RAG系统的工作流程,以测试大语言模型(如DeepSeek)在结合外部知识库时的性能表现。其核心是模拟“检索→生成”的联动过程,验证模型在依赖外部信息时的响应速度、准确性和稳定性。
2025-08-09 08:08:52
498
原创 ChatGPT和deepseek的区别与共同点
另外,开源方面,DeepSeek可能有开源模型,而ChatGPT主要是闭源的;首先,ChatGPT是OpenAI开发的,基于GPT系列模型,比如GPT-3.5和GPT-4,而DeepSeek是深度求索(DeepSeek Inc.)开发的大语言模型,可能在技术路线、应用场景等方面有差异。首先,共同点应该从大语言模型的基本特性入手,比如都基于Transformer架构,都能处理自然语言任务,如对话、生成、问答等,都需要大规模训练数据和计算资源,都支持多轮对话,可能都有API供开发者使用。
2025-08-08 05:34:43
713
原创 ChatGPT和DeepSeek的训练数据分别来自哪里?
ChatGPT的训练数据主要来源于互联网上的各种文本资源,包括网页、书籍、新闻等,具体如下:DeepSeek的训练数据来源较为广泛,涵盖网页、代码、学术论文等,注重多语言和领域的多样性,具体如下:
2025-08-07 05:06:14
359
原创 ChatGPT和DeepSeek的训练数据是如何清洗和预处理的?
共同点:均通过多阶段清洗(质量→重复→安全)和标准化预处理(分词→编码→格式统一)提升数据质量,依赖动态优化(如领域采样、增量学习)平衡模型泛化与垂直性能。差异点:ChatGPT侧重通用场景的广度覆盖,DeepSeek强于垂直领域(尤其是中文和代码)的深度优化。例如,DeepSeek通过代码依赖关系排序和数学推理数据二次审核,在代码生成任务上达到SOTA水平,而ChatGPT通过多模态能力(如GPT-4V)覆盖更广泛的应用场景。
2025-08-06 07:00:14
347
原创 deepseek如何处理图形识别技术
此外,DeepSeek还构建了CNN、RNN以及自注意力机制相融合的神经网络架构。初始阶段借助CNN提取图像关键信息,再利用RNN对视频帧序列建模,挖掘帧间时间依赖关系,自注意力机制则可聚焦关键位置,捕捉不同位置特征间的复杂关联。并且通过自适应卷积核结构,根据图像局部区域复杂程度和物体大小动态调整卷积核尺寸,以精准提取各类物体特征。在训练方面,基于混合精度训练和分布式训练策略,提升训练效率,为大规模模型的快速迭代提供保障。
2025-08-05 06:48:22
278
原创 大模型中tokens如何计算
此外,也可以根据经验公式进行大致估算。一般来说,1个英文字符约等于0.3个token,1个中文字符约等于0.6个token,但具体换算比例因模型分词策略而异。若要精确计算,可使用模型提供的分词工具,如OpenAI的tiktoken库。在大模型中,tokens的计算主要通过模型的分词器将文本分割成基本单元后进行统计,不同语言和模型的分词规则会影响计算结果。
2025-08-04 00:33:10
224
原创 PyTorch Profiler和jmeter工具区别
PyTorch Profiler 和 JMeter 是两款面向不同场景的工具,核心功能、适用领域和使用方式存在显著差异。嵌入 PyTorch 代码的执行过程,记录每个算子、函数、设备(CPU/GPU)的运行时间、内存分配/释放等细节,并生成可视化报告(如火焰图、时间线)。无需修改服务代码,只需配置请求参数(如 URL、请求方法、参数)、并发用户数、压测时长等,即可通过统计请求的响应结果计算性能指标。,适用于各类网络服务(如 Web 应用、API 接口、数据库、消息队列等)。是 PyTorch 官方提供的。
2025-08-03 07:17:38
640
原创 什么是吞吐量
吞吐量是衡量系统“处理效率”的核心指标,其数值越高,说明系统单位时间内能处理的任务或数据越多。在实际应用中,需结合具体场景(网络、服务器、存储等)理解其含义,并与响应时间、并发量等指标联动分析,才能全面评估系统性能。它直观反映了系统的承载能力和效率,是评估系统性能的关键参数之一。在计算机科学、网络通信、性能测试等领域,是衡量系统处理能力的核心指标,指。
2025-08-01 07:41:05
846
原创 并发率如何提高
提高并发率的核心是“消除瓶颈”:通过扩容硬件、异步化架构、优化存储、高效编程等手段,让系统的CPU、内存、IO、网络等资源被充分利用,同时避免单点阻塞。实际优化中需结合具体业务场景(如读多写少、写密集、实时性要求等),优先解决最突出的瓶颈(如数据库、网络IO),逐步迭代提升。
2025-07-31 07:00:15
316
原创 PAT性能测试工具如何使用
通过熟练使用 PAT 工具,可大幅提升代码性能和资源利用率,尤其在高性能计算(HPC)、AI 训练等场景中尤为重要。通常指由各大厂商提供的性能分析工具集。不同PAT工具的使用方式差异较大,以下以。,用于定位代码瓶颈、优化硬件资源利用率(CPU/GPU/内存)。VTune Profiler 是 Intel 开发的。,点击「New Project」创建新项目。
2025-07-30 06:13:24
652
原创 grafana简介
是一款开源的跨平台数据可视化和监控工具,专注于将时序数据(Time Series Data)转化为直观、可交互的图表、仪表盘(Dashboard),帮助用户实时监控系统、应用程序或业务指标的运行状态,快速发现问题并分析趋势。它支持对接多种数据源(尤其是时序数据库),并提供强大的可视化配置、告警管理和团队协作功能,是监控领域的主流工具之一,广泛应用于运维、开发、物联网等场景。用户可通过拖拽操作创建自定义仪表盘,将多个图表(来自同一或不同数据源)组合,集中展示关联指标。
2025-07-29 06:37:49
796
原创 自适应专家选择器技术简介
自适应专家选择器(AES)是混合专家模型(MoE)的核心技术,通过门控网络动态选择最适合处理当前输入的专家子网络。其创新在于根据验证损失自动调整激活专家数量,避免过拟合或欠拟合。相比传统固定Top-K路由,AES能更高效利用计算资源,为不同复杂度任务智能分配专家。典型应用如Deepseek的MoE 3.0架构,通过动态选择机制实现5.6倍计算效率提升。该技术通过自适应路由显著提升了模型的性能和资源利用率。
2025-07-28 07:24:21
315
原创 知识库智能机器人使用场景
存在明确的知识边界(如企业制度、行业法规)、高频重复的知识查询需求、对响应速度和准确性要求高。通过将分散的知识结构化、系统化,机器人可实现“知识复用”,既降低人工成本,又避免因人员流动导致的知识流失,最终实现“让知识高效流动”的核心价值。
2025-07-27 05:17:49
679
原创 telegraf简介
它具有轻量、灵活、插件丰富等特点,是时序数据监控生态(如 TICK Stack:Telegraf + InfluxDB + Chronograf + Kapacitor)中的核心组件之一。Telegraf 是时序数据采集的“瑞士军刀”,凭借丰富的插件和轻量特性,成为监控领域的重要工具。它简化了从多源采集数据并集成到监控生态的流程,常与 InfluxDB、Grafana 等组成完整的“采集-存储-可视化”监控链路,广泛应用于运维、物联网、工业监控等场景。对采集的数据进行实时处理,如过滤、转换、添加标签等。
2025-07-26 06:45:09
1537
原创 deepseek如何使用提示词对数据进行分析预警
在使用DeepSeek进行数据预警时,核心在于通过精准的提示词引导模型完成数据特征提取、异常识别和风险触发。
2025-07-25 00:48:31
826
原创 向量化模型简介
向量化模型是连接非结构化数据与计算机可处理格式的“桥梁”,通过将原始数据转化为语义相关的向量,让机器能以数学方式理解数据的含义,是现代检索、推荐、分析等任务的核心基础技术。
2025-07-24 05:41:26
340
基于若依自动生成代码实现多数据源菜单切换
2024-10-02
主从数据源基础上增加数据源的切换
2024-10-01
若依框架自动生成代码的步骤、使用的脚本和自动生成的代码
2024-09-30
distrowatch排名第三的linux系统EndeavourOS安装笔记
2024-07-31
详细介绍MongoDB与Vue结合的具体步骤
2024-10-27
部署基于Gitlab+Docker+Rancher+Harbor的前端项目
2024-10-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人