
医学AI项目复现
文章平均质量分 91
本专栏仅供测试,请不要购买,已购买用户请及时申请退款!
优惠券已抵扣
余额抵扣
还需支付
¥159.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
罗小罗同学
医学人工智能方向在读硕士,公众号和交流群均由个人运营,欢迎友好交流!!如需获取更多资源,欢迎加入我的知识星球!
展开
-
从零开始完成一个病理AI项目需要经历的7个流程|项目复现·25-01-22
数字病理学和人工智能的发展使得分析千兆像素全幅切片图像(WSIs)进行客观诊断、预后和治疗反应预测成为可能。然而,深度学习方法在处理WSIs时面临数据量大、标注成本高、领域适应性和可解释性差等挑战。现有的深度学习方法要么需要手动标注WSIs,要么依赖大量带有切片级标签的数据集,这在罕见诊断和临床试验中难以实现。此外,现有方法在处理不同来源和成像设备的图像时表现不佳,且缺乏对多类分类问题的支持。原创 2025-01-22 16:11:48 · 1210 阅读 · 0 评论 -
跟着柳叶刀数字健康,学习如何通过病理切片预测分子分类对预后的影响|项目复现
项目复现今天和大家分享一个非常具有参考价值的项目,。花了六个小时才完成的这篇推送,信息量非常大,遇到了很多报错问题,但是解决以后的感觉是非常爽的,先给大家展示一下最终的成果——。只要你跟着我的教程走,你也能,并且完整理解作者的思路,同时!除了完成分子分型任务,作者的代码中还有一个非常值得借鉴的——。我们可以通过生成质量控制缩略图,来评估采样的patches是否能代表切片的主要部分。此外,。原创 2025-02-21 12:16:16 · 670 阅读 · 0 评论 -
保姆级病理AI进阶教程,手把手教你可视化分析数据|项目复现·25-02-19
一个用于评估全切片图像(WSIs)的 patch 和 slide encoder 基础模型的数据集。Patho-Bench 概述目的:Patho-Bench 旨在评估用于全切片图像(WSIs)的 patch 和 slide encoder 基础模型。开发团队:由哈佛医学院和布莱根妇女医院的 Mahmood Lab 开发。数据内容:该 HuggingFace 仓库包含 Patho-Bench 公共任务的数据分割。完整的代码库和基准实现可以在GitHub上找到。任务分类。原创 2025-02-19 13:00:00 · 404 阅读 · 0 评论 -
无需编程基础,也能完成病理AI项目的保姆级教程|项目复现·25-02-17
动手前必读上周哈佛Mahmood Lab课题组上线了一个新的仓库,最近的更新时间为两天前,我稍微做了一些测试,效果很好,下图是我小批量测试的效果,,大家可以看看效果如何。!,我们通过这个项目,可以,小罗也会在后续的推文中继续分享我对这个项目的发掘,争取做到你们拿到就能上手的程度,所以为了防止错过小罗的更新,记得及时点个关注!官方流程比较简约,例如上图使用的模型是UNI,但是这个是受限访问的模型,,所以我在官方教程的基础上做了详细的补充!此外,。原创 2025-02-17 11:40:43 · 403 阅读 · 1 评论 -
细胞核的分割与分类模型·hover net| 补充文档
"train": {},"valid": {},save_root,# *# *: 这是一个Python常用的条件语句,用于检查当前脚本是否作为主程序运行。如果是,则执行下面的代码块。: 设置一个标志,指示是否进行类型分类。这通常用于有类别标签的数据集。: 定义提取图像块(patch)的窗口大小为540x540像素。: 定义在图像上移动窗口以提取块时的步长为164x164像素。: 定义提取块时的边界处理方式为"mirror",即使用镜像填充。原创 2024-06-23 11:38:22 · 1239 阅读 · 0 评论 -
细胞核的分割与分类模型·HoVer-Net|动手实操
上一期推文已经介绍了hover net的背景和代码仓库情况,这一期则是根据作者提供的示例代码进行分析,详细你看完这一期推文,应该就能大致掌握这些套路了。如果觉得意犹未尽,那就等待下一期吧,哈哈。原创 2024-06-23 11:39:58 · 3129 阅读 · 0 评论 -
编程助手·如何快速完成代码进阶?
iFlyCode 是一款智能编码助手插件,可以在程序员编程过程中沉浸式交互生 成代码建议,助力程序员提升编码效率和企业敏捷开发。iFlyCode 已适配多种主流编辑器,当前服务处于邀测阶段,欢迎您点击链接,注册并申请 iFlyCode 试用。原创 2024-03-21 14:27:58 · 1175 阅读 · 0 评论 -
临床故事想好了以后,如何挑选合适的算法去实现?【代码库分享|24-05-30】
计算病理学领域,人工智能,尤其是深度学习算法,已开始辅助显微镜图像数据的评估。然而,尽管过去十年在计算病理学领域发表了成千上万的研究论文,但只有少数算法被其他研究人员重新使用,更少的算法进入了常规的临床工作流程。算法无法在临床环境中广泛应用的主要原因是**缺乏可重复性和可重用性。此外,深度学习算法使用有限的原因之一是泛化差距算法在训练数据上的表现通常比在外部测试数据上更好**。部分原因是由于组织病理学数据的固有异质性,包括染色协议的变异性以及在不同的病理学实验室中使用不同的扫描器。原创 2024-05-30 08:47:13 · 955 阅读 · 0 评论 -
一文教会你在服务器端运行Jupyter(上)|项目复现·24-06-22
首先进入终端,配置用户名然后配置邮箱保存用户名和密码到本地列出当前用户的全局 Git 配置信息。原创 2024-06-22 13:44:31 · 2044 阅读 · 0 评论 -
一文教会你在服务器端运行Jupyter(中)|项目复现·24-06-22
上一篇推文我们学会了如何在服务器内克隆仓库,如何初步运行代码,在这一篇推文我们将进一步学习如何处理复杂的项目。这段代码涉及了PyTorch库、einops库以及自定义的函数调用。: 这行代码导入了PyTorch库,PyTorch是一个用于深度学习的开源机器学习库,提供了张量运算和神经网络构建等功能。: 这行代码从einops库中导入了rearrange和repeat函数。einops是一个**用于重塑和操作张量**的库,它提供了简单而强大的工具来处理张量的形状。: 这行代码从自定义的。原创 2024-06-22 13:48:41 · 1455 阅读 · 0 评论 -
项目实战|手把手教你实现病理切片染色标准化|项目复现·24-08-30
本期推文主题:手把手教你完成病理切片的染色标准化阅读完本期推文以后,你能实现的效果如下。友情提醒,。参考资料。原创 2024-09-02 11:27:58 · 704 阅读 · 0 评论 -
人工智能在病理组学中的优质开源项目推荐|项目复现·24-08-27
这篇文章报道了一种新的数字组织学生物标志物HiPS的开发和验证,该标志物能够通过深度学习分析肿瘤微环境的形态学特征,以提高侵袭性乳腺癌的预后预测准确性。研究团队由Mohamed Amgad等人组成,他们开发了一种名为HiPS(Histomic Prognostic Signature)的数字组织学生物标志物,用于提高侵袭性乳腺癌预后的效果。乳腺癌是一种全球最常见的恶性肿瘤,具有高度异质性,其生存结果因肿瘤生物学、治疗方案和社会经济因素而有很大差异。原创 2024-08-27 15:38:44 · 1643 阅读 · 0 评论 -
全网最详细·教你从零复现【人工智能病理】项目的保姆级教程
这期推文来盘一盘如何从零开始复现一个深度学习的项目,我选择的项目是与的。挑选好项目以后,可以建立一个简单的思维导图辅助我们梳理架构,首先要关注的,就是我红框选出来的两个文档。原创 2024-03-18 22:23:21 · 1703 阅读 · 2 评论 -
HoVer-Net复现:手把手带你实现细胞核的分割与分类,并输出叠加图像|24-06-21
HoVer-Net是一个用于多组织显微图像中细胞核的实例分割和分类的多分支网络。该网络利用细胞核像素的水平和垂直距离来区分聚集的细胞,并使用专门的上采样分支来对每个分割实例进行核类型的分类。接下来要介绍的代码,是HoVer-Net的官方版本,并且提供了训练模型权重——这些权重在CoNSeP、PanNuke、MoNuSAC、Kumar和CPM17等数据集上进行了训练。提供了环境设置指令、代码库结构、主要可执行脚本的说明,以及训练和推理的使用和选项。原创 2024-06-21 08:46:58 · 4960 阅读 · 0 评论 -
复现&搭建医学AI模型的工具以及流程介绍
利用VS Code辅助我们编程,可以极大的提升我们的工作效率,因为。原创 2024-12-10 17:16:26 · 932 阅读 · 0 评论 -
保姆级教程,带你复现病理AI的经典模型CLAM(一)|项目复现·24-08-19
CLAM(Clustering-constrained Attention Multiple Instance Learning)是一种基于深度学习的弱监督方法,用于高效和弱监督的全切片级分析。自动分割:CLAM首先对全切片图像进行自动分割,识别出组织区域。这通常涉及到将图像转换到HSV颜色空间,并使用饱和度通道进行阈值处理,以提取组织区域。特征提取:在分割之后,CLAM利用深度卷积神经网络(CNN)为每个分割出的补丁计算低维特征表示。这通常涉及到使用预训练的CNN模型,如ResNet50,来提取特征。原创 2024-08-19 07:37:31 · 7672 阅读 · 1 评论