Let it go !
码龄6年
关注
提问 私信
  • 博客:13,711
    13,711
    总访问量
  • 5
    原创
  • 839,060
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-07-17
博客简介:

qq_45420034的博客

查看详细资料
个人成就
  • 获得6次点赞
  • 内容获得1次评论
  • 获得65次收藏
  • 代码片获得375次分享
创作历程
  • 5篇
    2022年
成就勋章
TA的专栏
  • 机器学习
    5篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络pytorch图像处理
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

k近邻法--python代码实现与kd树构建搜索

文章目录算法简介python代码实现kd树的构建与搜索算法简介k近邻法属于监督学习,不需要训练模型(懒惰学习)。算法流程:对于测试样本,按照某种距离度量(闵可夫斯基距离、欧氏距离、曼哈顿距离、切比雪夫距离等)从给定的训练集中找出与其相近邻的k个训练样本,根据这k个训练样本信息进行预测。对于分类任务,可按照投票法,以k个训练样本中出现最多的类别作为预测结果;对于回归任务,可按照平均法,取k个训练样本实际输出的平均值作为预测结果,也可以加权平均,对于距离测试样本进的训练样本取较大的权重。python代码实
原创
发布博客 2022.02.19 ·
1640 阅读 ·
1 点赞 ·
2 评论 ·
17 收藏

聚类--DBSCAN算法

文章目录算法原理sklearn实现python代码实现(聚类效果同sklearn一样)算法原理DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法,能够将具有高密度的区域划分为簇,并且能够在具有噪声的样本中发现任意形状的簇。DBSCAN算法需要选择一种距离度量,计算两点之间的距离,反映点之间的密度,一般选择欧氏距离。该算法需要输入两个参数:一个参数是半径(eps),表示以给定点P
原创
发布博客 2022.02.19 ·
2095 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

聚类--KMeans算法

算法流程从数据集中随机选取k个聚类样本作为初始的聚类中心,然后计算数据集中每个样本到这k个聚类中心的距离(一般为欧氏距离),选取距离最小的聚类中心所对应的类别作为该样本点的类别;将所有样本点归类后,重新计算每个类别的聚类中心(取每类别样本集的均值)。重复上述过程,直到聚类中心不再更新或者达到阈值(如最大迭代次数)。python代码实现假设对如下数据进行聚类,首先可视化数据:import numpy as npimport matplotlib.pyplot as pltimport scipy.
原创
发布博客 2022.02.18 ·
2785 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

支持向量机--线性分类LinearSVC

文章目录原理sklearn实现二元分类多元分类--采用one vs rest方法原理线性支持向量机原始最优化问题:min:12∥w∥2+C∑i=1Nξimin:\frac{1}{2}\parallel{w}\parallel^{2}+C\sum_{i=1}^{N}\xi_{i}min:21​∥w∥2+Ci=1∑N​ξi​s.t. yi(w∙xi+b)≥1−ξi,i=1,2,⋯ ,Ns.t.\ y_{i}(w\bullet{x_{i}}+b)\ge1-\xi_{i},i=1,2,\cdots
原创
发布博客 2022.02.14 ·
3868 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

决策树算法--原理与python代码实现

决策树算法算法简单介绍特征选择信息增益信息增益比基尼指数决策树的生成ID3算法C4.5算法CART算法决策树的剪枝三种算法比较功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入算法简单介绍决策树是一种基本的分类与回归算法,本文介绍
原创
发布博客 2022.02.07 ·
3198 阅读 ·
2 点赞 ·
0 评论 ·
35 收藏