非递归遍历计算二叉树的深度

方法一:层次遍历

int btDept(BiTree T){
    /*
        初始化两个队列,分别用来存储不同层次的结点,例如:用Q1来存储根节点,则出队根结点的时候,
        根节点的左右孩子存储在Q2
    */
    initQueue(Q1);
    initQueue(Q2);
    BiTree p;
    int level = 0;   //表示树的深度
    EnQueue(Q,T);
    while((!isEmpty(Q1) || (!isEmpty(Q2))){         //当两个队列都不为空的时候,继续循环出队
        if(level % 2 == 0){   //初始的时候,将根节点入队Q1,第二层节点入队Q2...
            deQueue(Q1,p);
            if(isEmpty(Q1)){  //当队列为空时,说明这一层的结点已经全部出队,将此层加入到计数中
                level++;
            }
            if(p->lchild != NULL){    //入队左右孩子时,入队到另一个队列
                enQueue(Q2,p->lchild);
            }
            if(p->rchild != NULL){
                enQueue(Q2,p->rchild);
            }
        }
        else{
            deQueue(Q2,p);
            if(isEmpty(Q2)){
                level++;
            }
            if(p->lchild != NULL){
                enQueue(Q1,p->lchild);
            }
            if(p->rchild != NULL){
                enQueue(Q1,p->rchild);
            }
        }
    }
    return level;
}

方法二:利用后序遍历,当遍历到某一个结点时,其所有的祖先节点都在栈中,维持一个栈中的最大数,即树的最大深度

int postOrder(BiTree T){
    InitStack(S);
    BiTree p = T;
    r = NULL;    //r表示最近访问过的结点
    int max = 0, count = 0;
    while(p || !isEmpty(S)){
        if(p){
            push(S,p);       //根节点以下所有的左子树都放进栈中
            count++;
            p = p->lchild;
        }
        else{
            getPop(S,p);
            if(p->rchild && p->rchild != r){
                p = p->rchild;
            }
            else{
                max = max>count? max:count;
                pop(S,p);
                r = p;
                p = NULL;
            }
        }
    } 
    return max;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值