学习 | 文献通读《基于LDA的游客网络评论主题分类:以故宫为例》

本文通过LDA模型对故宫游客网络评论进行主题分类,得出4个最优主题,并运用旅游情感词典分析情感倾向。使用Gibbs采样估计模型参数,ICTCLAS进行分词和词性标注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于LDA的游客网络评论主题分类:以故宫为例
基于LDA的主题发现模型;

【关注问题】

主题及情感倾向;
关键词 LDA 游客 网络评论 情感分析 故宫

【主要模块】

1.LDA主题分类,得到4个主题为最优结果;
2.建立旅游情感词典,分析情感极性。

【其他技术点】

1.LDA文本自动分类模型,能够通过隐含主题将不同文本联系起来;
2.采用Gibbs采样来估计LDA模型相应参数;
3.数据预处理:

分词和词性标注采用中科院计算所ICTCLAS分词词性标注一体化系统;
去停用词采用停用词表;
语义去重利用Hownet。

【新知识】

1.停用词:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值