- 博客(2)
- 收藏
- 关注
原创 物体检测 - YOLO V1-V3 阅读笔记
目标检测常识 two-stage:Faster-Rcnn、Mask-Rcnn (5FPS) one-stage:YOLO (类似回归任务,速度快,效果没上边的好) recall = TPTP+FN\frac{TP}{TP+FN}TP+FNTP (查全率、召回率、覆盖率) 基于置信度阈值计算 precision = TPTP+FP\frac{TP}{TP+FP}TP+FPTP (精度、信噪比) 基于置信度阈值计算 AP:PR 曲线下边的面积,mAP:所有类别的平均 AP YOLO V1 网络架构
2020-05-10 21:11:35 728
原创 pytorch资料整合
学习资料汇总 总结一下这段时间学习 pytorch 用到的东西,以下为主要参考的资料: [深度学习框架] PyTorch 常用代码段总结 _ 极市高质量视觉算法开发者社区 PyTorch 的入门与实战(七月在线,褚老师),结合实战代码,很适合我这种好吃懒做的 B 站链接 深度学习与 PyTorch 入门实战教程(人工智能 101 学院,龙良曲),理论+代码讲的特别仔细 PyTorch 模...
2020-05-06 16:05:59 395
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人