欧几里得算法(辗转相除法)

gcd,即Greatest Common Divisor,最大公约数。

求gcd可以用著名的欧几里得算法,即辗转相除法。

欧几里得算法核心式子:
g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b) = gcd(b,a\:mod\:b) gcd(a,b)=gcd(b,amodb)
整个算法围绕这个式子展开。以如下方式不断迭代
g c d ( a , b ) = g c d ( b , a   m o d   b ) g c d ( b , a   m o d   b ) = g c d ( a   m o d   b , b   m o d   ( a   m o d   b ) ) . . . gcd(a,b)=gcd(b,a\:mod\:b)\\ gcd(b,a\:mod\:b)=gcd(a\:mod\:b,b\:mod\:(a\:mod\:b))\\.\\.\\.\\ gcd(a,b)=gcd(b,amodb)gcd(b,amodb)=gcd(amodb,bmod(amodb))...
最后一定能得到gcd(g,0)的形式,求得gcd为g。

证明:

有整数a,b,存在整数x,y,z对于式子
x ∗ a + y ∗ b = z x*a+y*b=z xa+yb=z

成立,显然z一定是gcd(a,b)的倍数(因为a是gcd(a,b)的倍数,b也是gcd(a,b)的倍数)。设q为a/b的商,r为a%b,则有:
a − q ∗ b = r a-q*b=r aqb=r
设d为a,b的一个公因数,则d|a,d|b均成立,由上一个式子可得d|r,所以a,b的公因子,同时也是r的因子,则a,b的最大公约数同时也是b,r(即a%b)的最大公约数。即:
g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b)=gcd(b,a\:mod\:b) gcd(a,b)=gcd(b,amodb)
code:

int gcd(int a,int b)
{
    if(b == 0) return a;
    else return gcd(b,a % b);
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值