自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(91)
  • 收藏
  • 关注

原创 基于BiLSTM的预测模型及其Python和MATLAB实现

这意味着对于每个时间步,BiLSTM不只考虑当前时间步的前后上下文信息,还同时考虑后续时间步的信息,增强了模型对上下文的捕捉能力。其中,\(h_t^{forward}\) 是正向LSTM在时间步 \(t\) 的输出,\(h_t^{backward}\) 是反向LSTM在时间步 \(t\) 的输出,组合后形成一个更为丰富的上下文表示。- **上下文信息捕捉**:通过双向处理,可以更加全面地捕获序列中的信息,提高模型的预测准确性。- **遗忘门(Forget Gate)**:决定保留多少过去的信息。

2024-08-14 09:56:15 600

原创 基于BiGRU的预测模型及其Python和MATLAB实现

双向GRU(BiGRU)则进一步扩展了GRU的能力,它通过同时考虑序列的过去和未来信息,使模型在许多序列预测任务中表现得更为优秀。在当今快速发展的数据驱动的时代,尤其是在自然语言处理(NLP)、时间序列预测、语音识别等任务中,深度学习技术的应用已经变得越来越普遍。根据具体数据集和任务的需要,可以进行相应的调整和扩展。以时间序列预测为例,通过对比BiGRU与LSTM、线性回归等模型的结果,可以发现BiGRU在精度上通常优于线性回归与传统RNN模型,而与LSTM相比则因具体数据集和任务不同而有所差异。

2024-08-14 09:53:02 1264

原创 长短期记忆网络(LSTM)预测模型及其Python和MATLAB实现

LSTM 通过独特的门控机制解决了传统 RNN 的梯度消失和梯度爆炸问题,使其在处理长序列时具有显著优势。随着技术的不断发展,LSTM 及其变种(如 Bi-directional LSTM、Stacked LSTM 等)有望在更复杂的任务中发挥重要作用。2. **可视化真实值和预测值**:通过绘图来比较真实值和预测值,判断模型的准确性。2. **输入门(Input gate)**:决定当前的输入信息对细胞状态的影响。1. **细胞状态(Cell state)**:保持信息在时间步之间的传递。

2024-08-13 21:35:29 1358

原创 门控循环单元(GRU)预测模型及其Python和MATLAB实现

GRU 将LSTM中的若干门合并,减少了模型的复杂性,便于训练和实现。其中,\( W_z \) 是权重矩阵,\( x_t \) 是当前输入,\([h_{t-1}, x_t]\) 表示将前一状态和当前输入拼接在一起。更新门 \( z_t \) 决定了当前状态 \( h_t \) 是由前一状态 \( h_{t-1} \) 更新而来的,还是保留了多少原有状态的信息。重置门 \( r_t \) 控制着前一状态 \( h_{t-1} \) 在计算当前候选状态 \( \tilde{h}_t \) 时的影响程度。

2024-08-13 21:32:11 763

原创 贝叶斯优化算法(Bo)与最小二乘支持向量机(LSSVM)结合的预测模型(Bo-LSSVM)及其Python和MATLAB实现

这些超参数的调优是一个重要而复杂的问题,尤其在复杂模型(如支持向量机)中。未来随着数据量的不断增加与计算能力的提升,贝叶斯优化和LSSVM的结合将在更广泛的场景中发挥更大的作用。在该函数中,我们将根据给定超参数(如C和gamma)训练LSSVM模型,并返回模型在验证集上的性能指标(如均方误差)。LSSVM的求解通常通过拉格朗日乘数法得出,这种方法的优势在于易于实现和低计算复杂度,适合大规模数据集的任务。3. **更新后验分布**:根据已评估的超参数和对应的性能指标更新高斯过程的后验分布。

2024-08-12 22:06:01 518

原创 鱼鹰优化算法(OOA)与最小二乘支持向量机(LSSVM)结合的预测模型(OOA-LSSVM)及其Python和MATLAB实现

最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)作为一种改进的支持向量机方法,通过将不等式约束转化为等式约束,并采用最小二乘线性系统作为损失函数,有效提高了模型的求解速度和预测精度。然而目前关于OOA-LSSVM模型的研究仍处于起步阶段尚存在许多待解决的问题如算法参数的优化、模型的泛化能力等。在OOA-LSSVM预测模型中,需要初始化的参数包括LSSVM的正则化参数、核函数参数以及OOA算法的种群大小、迭代次数等。% C, gamma 范围。

2024-08-12 21:59:33 637

原创 CNN-LSTM-Attention预测模型及其Python实现

其中,CNN-LSTM-Attention预测模型因其结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention)的优势,在时间序列预测中展现出强大的潜力和优势。综上所述,CNN-LSTM-Attention预测模型通过结合CNN、LSTM和注意力机制的优势,在时间序列预测中展现出强大的潜力和优势。在CNN-LSTM-Attention模型中,注意力层接收LSTM层的输出作为输入,并计算每个时间步的注意力权重。池化层则用于降低数据的维度,减少计算量,并增强模型的鲁棒性。

2024-08-11 20:46:07 1589 1

原创 CNN-GRU-Attention预测模型及其Python实现

因此,将CNN、GRU和注意力机制相结合,构建CNN-GRU-Attention预测模型,成为当前时间序列预测研究的一个热点方向。近年来,随着深度学习技术的迅猛发展,基于神经网络的预测模型在时间序列预测中展现出强大的潜力和优势。CNN-GRU-Attention预测模型通过结合CNN、GRU和注意力机制的优势,在时间序列预测领域展现出了强大的潜力和优势。在实际应用中,该模型具有广泛的应用前景和重要的研究价值。卷积层中的卷积核在输入数据上滑动,通过加权求和和激活函数的作用,提取出数据的局部特征。

2024-08-11 20:40:38 786

原创 BP神经网络概述及其预测的Python和MATLAB实现

神经元是BP神经网络的基本单元,通常包括输入层、隐藏层和输出层。BP神经网络的应用极其广泛,涵盖了模式识别、图像处理、语音识别、自然语言处理、金融预测等多个领域,显示了其在实际问题中的强大能力。1. **选择合适的激活函数**:根据具体应用选择激活函数,ReLU适合于深层网络,而Sigmoid适用于简单网络。3. **避免过拟合**:可通过增加正则化、提前停止(early stopping)、网络结构简化等方式防止过拟合。其中 \(W^{(1)}\) 为第一层的权重矩阵,\(b^{(1)}\) 为偏置项。

2024-08-10 11:17:34 918

原创 支持向量机(SVM)概述及其分类预测的Python和MATLAB实现

给定一组训练样本 \((x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\),其中 \(x_i \in \mathbb{R}^n\) 是特征向量,\(y_i \in \{+1, -1\}\) 是类别标签。间隔是指到超平面的最近样本点的距离。- **标准化**:数据标准化是必要的, SVM对数据量纲敏感,通过标准化使得特征在同一量纲下,有助于模型的收敛。3. **模型训练**:使用现有的库(如scikit-learn)中的SVM实现,通过训练数据集进行模型的训练。

2024-08-10 11:11:01 936

原创 蚁狮优化算法(ALO)与支持向量机(SVM)结合的预测模型及其Python和MATLAB实现

其中,\( w \)为权重向量,\( C \)为惩罚系数,\( |y_i - f(x_i)| \)为预测误差,\( (\cdot)_+ \)表示非负部分。比较ALO-SVR和传统SVR模型的性能,结果显示ALO-SVR模型在预测MSE上优于基本SVR,说明其在超参数优化方面的有效性。优秀的解负责“捕食”较差的解,形成不断优化的过程。- **初始化种群**: 随机生成一定数量的候选解,每个解包括C和ε的初始值。3. **性能优化**: 对于更复杂的数据集,考虑使用交叉验证来评估模型的稳定性和性能。

2024-08-09 20:06:11 999

原创 麻雀搜索算法(SSA)与支持向量机(SVM)结合的预测模型(SSA-SVM)及其Python和MATLAB实现

其中,\(w\) 是权重向量,\(C\) 是正则化参数,\(\xi_i\) 和 \(\xi_i^*\) 是松弛变量。本研究提出的基于SSA-SVR的预测模型为锂离子电池的剩余寿命预测提供了新的解决方案。fprintf('优化后的C: %.3f, 优化后的ε: %.3f, 测试集MSE: %.3f\n', C_opt, epsilon_opt, mse);% 30个麻雀,50次迭代。print(f"优化后的C: {C_opt}, 优化后的ε: {epsilon_opt}, 测试集MSE: {mse}")

2024-08-09 20:02:21 1006

原创 冠豪猪优化算法(CPO)、卷积神经网络(CNN)与支持向量机(SVM)结合的预测模型(CPO-CNN-SVM)及其Python和MATLAB实现

然而,传统的CNN模型通常需要大量的标注数据和长时间的训练,且对特征的选择和模型参数的调优敏感。3. **处理复杂数据**:在面对高维、非线性的数据时,如图像数据,简单的算法往往无法得到令人满意的结果,而CNN-SVM的组合可以更好地拟合这些数据。1. **提升准确率**:将CNN与SVM相结合能够充分利用CNN的特征提取能力和SVM的分类能力,从而提高模型的预测准确度。3. **扩展性**:未来可以将此模型推广到其他任务中,如语音识别、文本分类等,通过增加更多的输入特征提升模型的泛化能力。

2024-08-08 21:16:11 1285

原创 浣熊优化算法(COA)与支持向量机(SVM)结合的预测模型及其Python和MATLAB实现

此外,特征选择的质量也直接影响模型的性能。COA-SVM算法的结合为多特征预测模型的优化提供了新的思路,能够有效提升SVM模型在复杂数据上的性能。通过借助浣熊优化算法的优势,在超参数调整和特征选择策略上取得了显著成果,使得模型不仅具备较强的鲁棒性,也能适应更为复杂的预测任务。1. **计算能力**:浣熊的觅食能力受限于环境,而不同浣熊在觅食过程中进行互动、竞争,这形成了一种基于局部和全局信息的搜索方式。在COA的作用下,多特征数据的SVM分类模型可以得到优化,从而提高模型的预测精度和泛化能力。

2024-08-08 20:57:31 1062

原创 PID-XGBoost预测模型及其Python和MATLAB实现

与传统的网格搜索和随机搜索相比,PID搜索算法能够在较短的时间内收敛至接近全局最优的解,进而提升模型的预测能力。在实际应用中,PID-XGBoost不仅可以优化XGBoost模型本身,也可以应用于其他机器学习算法的超参数调整,具有很好的通用性和扩展性。为此,引入了基于进化算法的自适应优化方法,如粒子群优化(PSO)、遗传算法(GA)等,在这些算法中,PID控制(比例-积分-微分控制)作为一种控制理论的核心思想,能够有效地对某一目标进行优化,通过智能搜索找到最佳超参数。这些参数被定义为PID控制的目标。

2024-08-07 22:00:38 726

原创 蓝鲸优化算法(BWO)与XGBoost模型结合的预测模型(BWO-XGBoost)及其Python和MATLAB实现

随着数据量的增加和复杂性的提升,传统的机器学习算法在模型训练和预测上的效率逐渐无法满足应用需求。BWO(Blue Whale Optimization)算法是一种新颖的群体智能算法,模拟了蓝鲸的捕食行为,具有较好的全局搜索能力和较强的收敛性能。可以根据自己的数据集进行相应的修改和拓展。通过将BWO算法应用于XGBoost模型的超参数优化,可以有效提升模型的预测性能,减少计算资源的消耗。4. **迭代更新**:根据适应度和蓝鲸的位置更新,迭代进行,直到满足停止条件(如达到预定的迭代次数或适应度不再提升)。

2024-08-07 21:59:00 859

原创 支持向量机(SVM)预测模型及其Python和MATLAB实现

以上代码展示了如何在Python和MATLAB中实现支持向量机(SVM)预测模型。这些示例中,使用了简单的二分类数据集。以下是SVM预测模型的Python和MATLAB实现示例。print("分类报告:\n", classification_report(y_test, y_pred))如果是回归,用SVR。print("混淆矩阵:\n", confusion_matrix(y_test, y_pred))

2024-08-06 22:18:31 552

原创 多元线性回归(MLR)预测模型及其Python和MATLAB实现

这两个实现展示了如何在Python和MATLAB中构建和评估多元线性回归模型。y = 3 + 2 * X[:, 0] + 3 * X[:, 1] + np.random.randn(100) # 生成y值。X = np.random.rand(100, 5) # 100个样本和5个特征。fprintf('均方误差 (MSE): %.4f\n', mse);

2024-08-06 22:16:36 716

原创 贝叶斯优化算法(Bo)与门控循环单元(GRU)结合的预测模型(Bo-GRU)及其Python和MATLAB实现

未来的研究可以进一步探讨更复杂模型的组合,或者在实时数据流的情况下,如何动态调整模型参数,以提高预测的准确性和实时性。- **混合方法的优势**:结合贝叶斯优化的GRU模型,不仅适用于单一领域的时间序列预测,未来还可以扩展到其他类型的数据预测任务。- **性能提升**:通过贝叶斯优化找到的超参数显著提升了模型的预测性能,较之随机搜索和网格搜索,优化过程更高效。- **可视化效果**:预测结果的可视化展示,有助于直观理解模型的性能,并具体分析哪些时间点的预测效果较好或较差。

2024-08-05 22:05:22 1241 1

原创 贝叶斯优化算法(Bo)与长短期记忆网络(LSTM)结合的预测模型(Bo-LSTM)及其Python和MATLAB实现

然而,LSTM模型的性能往往依赖于超参数的选择,如隐藏层的单元数量、学习率等。- **模型性能评估**:通过比较优化前后的模型在验证集和测试集上的平均绝对误差(MAE)或均方误差(MSE),能够清晰地看到贝叶斯优化对LSTM超参数选择的提升。5. **模型训练与评估**:最终确定的超参数配置下,训练完整的LSTM模型,并在测试集上进行评估,比较其性能与未优化模型的差异。3. **代理模型构建**:创建高斯过程作为代理模型,对LSTM的性能进行建模,并定义目标函数(如验证集上的损失或准确率)。

2024-08-05 22:02:44 1221

原创 智能优化算法概述及其Python和MATLAB实现

智能优化算法作为一种新兴的优化手段,凭借其强大的适应性和高效的搜索能力,已经在多个领域取得了显著成果。随着计算能力的提升和算法的不断进步,未来智能优化算法将能够解决更多复杂的优化问题,推动各个领域的发展。智能优化算法的核心思想模仿了自然界中的一些现象或过程,包括但不限于生物进化(遗传算法)、社群行为(蚁群算法、粒子群优化)、模拟退火等。其中,\( w \) 为惯性权重,\( c_1 \) 和 \( c_2 \) 为学习因子,\( r_1 \) 和 \( r_2 \) 为随机数。

2024-08-04 21:15:43 1246 1

原创 鲸鱼优化算法(WOA)与长短期记忆网络(LSTM)结合的预测模型(WOA-LSTM)及其Python和MATLAB实现

而长短期记忆网络(LSTM)作为一种特殊的递归神经网络(RNN),能有效处理长序列数据,尤其在捕捉数据中的长期依赖关系方面表现突出,因此被广泛应用于各类时间序列预测问题。未来可以探索更复杂的模型结合,如多层次的卷积神经网络(CNN)与LSTM的混合,或使用其他优化算法(如遗传算法、粒子群优化等)进行超参数优化。WOA在超参数调优中的应用,降低了手动调整超参数的难度,提升了模型优化的效率。在优化完成后,使用测试集对最终模型进行评估,比较预测结果与实际数据的差异,计算相应的误差指标(如MSE、MAE)。

2024-08-04 20:54:30 1193

原创 鲸鱼优化算法(WOA)与门控循环单元(GRU)结合的预测模型(WOA-GRU)及其Python和MATLAB实现

Python和MATLAB的实现均突出模型结构和优化过程。2. **全局搜索与局部搜索结合**:WOA在寻优时,既有全局搜索的能力,又具备局部精准搜索的能力,能有效避免陷入局部最优解。2. **简化结构**:与长短期记忆(LSTM)相比,GRU的结构更为简化,避免了多层细胞结构,提高了计算效率。4. **使用WOA进行优化**:通过WOA迭代优化GRU模型中的参数,如学习率、批量大小和GRU单元的权重。3. **良好的表现**:GRU在多个时序数据序列的预测任务中表现优异,特别是在较短的数据序列中。

2024-08-04 20:51:03 1012

原创 灰狼优化算法(GWO)与门控循环单元(GRU)结合的预测模型(GWO-GRU)及其Python和MATLAB实现

这一创新性的实践强调了优化算法在深度学习中的重要性,未来的研究可以进一步探索GWO在其他深度学习模型中的应用,以及如何将多种优化算法结合以应对更为复杂的预测任务。通过不断的实验与分析,能够推动时序数据分析领域的进一步发展,开辟更广泛的应用可能性。- 在智能电网中,通过采集历史用电数据,使用GRU进行预测,GWO优化其超参数,从而准确预测未来的电力需求,辅助电网的合理调配。- 在股票市场中,利用历史价格、交易量等数据进行预测,通过GRU捕捉趋势变化,并通过GWO优化模型的参数,提高预测的准确性。

2024-08-03 20:27:11 1226

原创 灰狼优化算法(GWO)与长短期记忆网络(LSTM)结合的预测模型(GWO-LSTM)及其Python和MATLAB实现

在现代数据科学和人工智能领域,预测模型的准确性和效率是研究者和工程师不断追求的目标,尤其是在时间序列预测、金融市场分析、气象预测等领域。在标准RNN中,信息的传播依赖于隐藏状态,而在LSTM中,引入了记忆单元和三个门(输入门、遗忘门、输出门),使得网络能够在训练过程中学习何时保留或丢弃信息。- **猎捕行为**:在捕猎过程中,灰狼会围绕猎物进行包围,利用自身的社会等级,通过协作实现高效的捕猎。其中,\(X^*\)为优秀个体,C和A是通过迭代变化的常数,D为当前个体和优秀个体之间的距离。

2024-08-03 20:23:10 1352

原创 麻雀搜索算法(SSA)与长短期记忆网络(LSTM)结合的预测模型(SSA-LSTM)的Python 和 MATLAB实现

确保在模型训练中使用实际的数据集,设置适当的超参数,并考虑使用验证集来评估模型性能。结合麻雀搜索算法(Sparrow Search Algorithm, SSA)和长短期记忆网络(LSTM)的模型可以用于时间序列预测任务。model = create_lstm_model((10, 1)) # 示例输入形状。fprintf('最佳 LSTM 单元数: %d\n', bestUnits);fprintf('最佳模型损失值: %.4f\n', bestValue);# 使用随机数据,您应使用实际的训练数据。

2024-08-02 22:18:55 742

原创 麻雀搜索算法(SSA)与门控循环单元(GRU)结合的预测模型(SSA-GRU)的Python 和 MATLAB实现

在实际应用中,需要用真实数据替代示例数据,并根据实际需求调整模型参数和评估方法。以下是麻雀搜索算法(Sparrow Search Algorithm, SSA)与门控循环单元(GRU, Gated Recurrent Unit)结合的预测模型在 Python 和 MATLAB 中的实现示例。fprintf('最佳 GRU 单元数: %d\n', bestUnits);fprintf('最佳模型损失值: %.4f\n', bestValue);print("最佳 GRU 单元数:", best_units)

2024-08-02 22:16:30 557

原创 Transformer预测模型及其Python和MATLAB实现

通过将输入的查询、键和值线性变换为多个不同的头部,然后并行计算每个头的注意力,最后将所有头的结果拼接后经过线性变换。- **查询(Query)、键(Key)和值(Value)**:对输入的词嵌入进行线性变换,得到查询、键和值。- **解码器**:解码器结构类似于编码器,但在每个层中加入了对先前生成的输出的自注意力机制,确保了模型在生成文本时不会依赖当前时间步以后的信息。- Python实现中,使用了PyTorch构建了一个基本的Transformer模型,使用了线性层在输入和输出之间的映射。

2024-08-01 20:56:51 1484 2

原创 多层感知器(Multilayer Perceptron, MLP)预测模型及其Python和MATLAB实现

MLP是一种前馈神经网络,由多个神经元层组成。随着大数据时代的到来,获取的数据量激增,MLP凭借其强大的表达能力,成为分析和预测的重要工具。- **反向传播**:根据输出层的误差,通过梯度下降算法来更新网络的权重和偏置。- MATLAB示例中,使用自定义的`make_regression`函数生成回归数据,定义了MLP模型的结构,并使用MATLAB的深度学习工具箱训练模型。2. **隐藏层**:隐藏层的数量和每层的神经元个数可以根据具体问题进行调整。- **特征选择**:选择重要的特征,以提高模型的性能。

2024-08-01 20:45:45 1436

原创 支持向量机(SVM)预测模型及其Python和MATLAB实现

假设我们有一个训练集 \( \{(\mathbf{x}_i, y_i)\}_{i=1}^n \) ,其中 \( \mathbf{x}_i \in \mathbb{R}^d \) 是特征向量,\( y_i \in \{-1, 1\} \) 是对应的类别。在许多实际应用中,数据可能是线性不可分的。1. **文本分类**:如垃圾邮件检测、情感分析等任务,SVM因其高效的处理能力,成为文本分类领域的重要工具。3. **良好的泛化能力**:通过最大化间隔的优化,SVM具有较好的泛化性能,能够有效避免过拟合。

2024-07-31 23:49:26 1410 1

原创 极限学习机(ELM)预测模型及其Python和MATLAB实现

2. **解析解法**:通过利用线性代数的方法,ELM能够将隐层的输出表示为一个简单的线性方程,通过最小二乘法直接计算得到输出层的权重,避免了迭代训练过程中的梯度下降等计算复杂度高的问题。1. **随机权重初始化**:与传统的神经网络相比,ELM的隐层神经元是随机生成的,并且不需要通过训练去调整权重。3. **泛化能力**:尽管隐层参数是随机固定的,ELM依然具备良好的泛化能力,能有效处理高维非线性数据。3. **较强的泛化能力**:在一定范围内,随机初始化隐层权重具有良好的泛化性能,能够避免过拟合。

2024-07-31 23:45:37 626

原创 门控循环单元(GRU)预测模型及其Python和MATLAB实现

然而,传统的RNN在长序列数据的训练中面临梯度消失和爆炸的问题,导致模型对长期依赖的学习能力不足。GRU模型在时间序列预测中表现出色,其结构较为简单,训练效率高。- **参数更少**:由于重置门和更新门的组合,GRU所需的参数数量通常低于LSTM,减少训练时间和内存占用。- **结构简单**:相比LSTM,GRU少了一个门(输出门),模型更加简洁,适合于计算资源有限的场合。

2024-07-30 21:28:05 926 1

原创 长短期记忆网络(LSTM)预测模型及其Python和MATLAB实现

# LSTM预测模型背景长短期记忆网络(Long Short-Term Memory,LSTM)是一种特殊的递归神经网络(RNN),于1997年首次由Sepp Hochreiter和Jürgen Schmidhuber提出。LSTM主要用于处理和预测序列数据中的时间依赖关系,能够有效地解决传统RNN在处理长序列时遇到的梯度消失和梯度爆炸问题。因此,LSTM在自然语言处理、时间序列预测、语音识别和其他许多涉及序列数据的领域中得到了广泛应用。

2024-07-30 21:23:36 1219

原创 随机森林(Random Forest)预测模型及其特征分析(Python和MATLAB实现)

在随机森林中,有多个超参数可以调节,如树的数量(`n_estimators`)、最大深度(`max_depth`)、每次分裂考虑的特征数量(`max_features`)等。例如,在医疗行业中,随机森林可以用来预测疾病的发生,分析患者的病史、年龄、性别等特征,帮助医生做出更精准的诊断。3. **投票机制**:在分类问题中,每棵树会给出一个类别的预测,最终模型的预测结果是所有树预测结果的“投票”结果。2. **随机特征选择**:在每次树的分裂时,不是考虑所有特征,而是随机选择一定数量的特征进行比较。

2024-07-29 21:22:31 2692 1

原创 Abaqus的信息区(Message Area)意外隐藏(不见了)的恢复方法(快速解决)

2. **检查窗口布局**:在 Abaqus/CAE 的菜单栏中找到 “视图” (View) 菜单,选择“重置窗口布局” (Reset Window Layout)。1. **手动调整界面**:有时信息区可能是被拖动到了不可见的位置。4. **检查系统显示设置**:有时,显示器的分辨率或缩放设置会影响软件的显示。希望这些信息能帮助你找回信息区!3. **查看工具条设置**:进入“Abaqus/CAE” 中的工具条设置,确保信息区的显示选项是开启的。5. **重启软件**:有时候简单的重启可以解决界面问题。

2024-07-29 21:21:20 558

原创 SSA-GRU(自适应平滑自回归门控循环单元)预测模型及其Python和MATLAB实现

2. **输入GRU模型:**将从SSA得到的平滑时间序列(去噪后的信号)作为GRU模型的输入,利用GRU的门控机制来捕捉时间序列中的复杂模式和依赖关系。3. **预测输出:**GRU经过训练后,能够根据输入的时间序列预测未来的值。- **重构**:通过选取主成分(比如较大特征值对应的特征向量),重构出平滑的时间序列,以便去除噪声和捕捉趋势信息。- **奇异值分解(SVD)**:对嵌入的矩阵进行奇异值分解,以提取出主要成分。- **去噪能力强:**SSA能有效去除时间序列中的噪声,提高模型的预测效果。

2024-07-27 21:18:29 524 1

原创 PSO-GRU和IPSO-GRU预测模型及其Python和MATLAB实现

**模型训练**:与PSO-GRU相似,IPSO也用于优化GRU的参数。- **基本概念**:IPSO是在传统PSO的基础上进行改进,通常通过引入新的策略来增强算法的收敛性和搜索能力。- **优势**:IPSO的优势在于其改进的策略可以有效避免早熟收敛和局部最优解的问题,从而提高模型的整体性能。- **优势**:PSO-GRU结合了优化算法的全局搜索能力和GRU的时间序列建模能力,提升了预测精度。- **适用性**:PSO适用于非线性、多模态的问题,能够有效地搜索大量的解空间。

2024-07-27 21:18:03 698

原创 人工蜂鸟算法(Artificial Hummingbird Algorithm,AHA)及其Python和MATLAB实现

其中,\(x_{i}^{new}\)为更新后的个体位置,\(x_{i}^{old}\)为老位置,\(x_{best}\)表示当前最优位置,\(r\)为随机数(0到1之间)。1. **初始化**:设置算法参数(例如群体大小、最大迭代次数等),并随机生成一定数量的蜂鸟个体在解空间中。1. **个体更新**:每个蜂鸟个体根据自身的经验和邻居的经验更新其位置,从而探索新的解空间。2. **全局搜索能力强**:通过群体的协作策略提高了全局搜索能力,减少了陷入局部最优的风险。% 简单的目标函数,求最小化。

2024-07-26 21:44:12 686

原创 禁忌搜索算法(Tabu Search,TS)及其Python和MATLAB实现

禁忌搜索利用一个称为“禁忌表”的数据结构,记住最近访问的解决方案,从而禁止在短期内回到这些解,借此探索更广泛的解空间并寻求更优解。禁忌搜索算法的性能常常取决于多个因素,如禁忌表的大小、邻域结构的设计以及目标函数的计算复杂度。该算法可视为改进的局部搜索,允许进行“非对称”的搜索,即尽管某些解在短期内被禁止,算法仍可以探索其他潜在的解。- **更新禁忌表**:将当前解或某个特定的属性(如交换的元素)加入禁忌表,确保在之后的搜索中不再回到该解。- **评估邻域解**:计算邻域中所有解的目标函数值,并找出最优解。

2024-07-26 21:36:40 528

原创 粒子群算法PSO优化BP神经网络(PSO-BP)回归预测——Python和MATLAB实现

4. **PSO算法**:实现了PSO算法,通过评估每个粒子的表现来更新其位置和速度,并根据最佳表现更新全局最佳位置。3. **粒子类实现**:定义了粒子类,该类的每个实例都有自己的神经网络,位置(参数)、速度、最佳位置和最佳评分。3. **网络创建**:使用`fitnet`创建一个前馈神经网络,指定隐藏层中神经元的数量。5. **模型训练与测试**:使用PSO优化BP神经网络后,预测测试集并计算均方误差。2. **BP网络实现**:定义了一个简单的前馈神经网络类,并实现了训练和预测功能。

2024-07-25 21:11:28 1060

基于神经网络(SAE、LSTM、GRU)的交通流预测

交通流预测是城市交通管理和规划中重要的问题之一。通过神经网络模型如Stacked Autoencoder (SAE)、Long Short-Term Memory (LSTM)、Gated Recurrent Unit (GRU)等的应用,可以实现更准确的交通流量预测,帮助城市决策者更好地规划交通运输系统、优化路况以及改善出行体验。使用场景:交通拥堵预测: 基于神经网络模型进行交通流预测可以帮助预测未来某个时间点或区域的交通拥堵情况,有助于采取相应措施缓解拥堵。 公共交通优化: 针对公共交通车辆的调度和路线规划,通过神经网络预测乘客量和拥堵情况,能够提高公共交通效率。城市规划: 分析历史交通数据,预测不同区域未来的交通流量变化,为城市规划和交通基础设施建设提供参考。目标:精准预测: 利用SAE、LSTM、GRU等神经网络模型,提高交通流预测的准确性和可靠性,使预测结果更贴近实际情况。实时预测: 实现实时交通流量预测,帮助交通管理部门及时调整交通信号灯、引导交通,并提高城市交通系统的运行效率。可解释性和可视化: 结合神经网络模型,通过可视化方式呈现预测结果,增强决策者对交通数据的理解。

2024-07-22

基于RNN、GRU、LSTM和Attention的“时间序列预测”代码

包含使用RNN、GRU、LSTM或Attention方法进行基本时间序列预测的实现。在时间序列预测任务中,RNN、GRU、LSTM和Attention是常用的深度学习模型。通过使用这些模型,可以捕获时间序列数据中的长期依赖关系和模式,从而有效地预测未来时间点的数值或趋势。 在实现方面,可使用深度学习框架如TensorFlow或PyTorch来构建模型。这些框架提供了各种RNN、GRU、LSTM和Attention层的实现,使模型构建和训练过程更加简单。

2024-07-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除