HDU - 6602 Longest Subarray(线段树+思维)

题目链接:点击查看

题目大意:给出一个长度为 n 的序列,每个数字的范围是 [ 1 , C ] ,现在需要求一个子串,使得字串中的字母,要么出现 0 次,要么出现至少 K 次,问这个子串的最大长度是多少

题目分析:第一反应是二分+尺取,但感觉会超时,正解是线段树,枚举 1 ~ n 作为子串的右端点,然后贪心找符合条件的左端点

对于任意一个位置 i ,再对于任意一个数字 b 来说,设 pos1 是数字 b 从位置 i 向左开始第一次出现的位置,pos2 是第 k 次出现的位置,pos3 是第 k - 1 次出现的位置(下面会用到),则对于数字 b 来说,可以选择的左端点的区间范围是 [ 1 , pos2 ] 和 [ pos1 + 1 , i ] 

这样当我们枚举位置 i 时,假设位置 i 的数字为 num ,其前一次出现的位置为 pre,则因为第 i 个位置是 num,所以区间 [ pre + 1 , i ] 这段区间对左端点的贡献集体减一,因为如果还没有第 i 个数字出现的话,那么对于数字 num 来说,区间 [ pre + 1 , i - 1 ] 这段区间对左端点的贡献都为 1 ,所以当加入第 i 个位置的 num 后,需要群体减一

同时,因为新加入了一个 num 的位置,所以原先 [ 1 , pos2 ] 的这段区间扩大到了 [ 1 , pos3 ] 这么大,相当于 [ pos2 + 1 , pos3 ] 这段区间对左端点的贡献集体加一了

因为对于贡献来说,既有群体加一,又有群体减一,所以当一个节点的相对贡献大于等于 0 时,说明当前节点可以选做为左端点,每次处理完后,贪心去寻找相对贡献大于等于 0 的最左端的位置,然后更新答案即可

代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
using namespace std;

typedef long long LL;

typedef unsigned long long ull;

const int inf=0x3f3f3f3f;

const int N=1e5+100;

vector<int>pos[N];

struct Node
{
	int l,r,mmax,lazy;
}tree[N<<2];

void pushup(int k)
{
	tree[k].mmax=max(tree[k<<1].mmax,tree[k<<1|1].mmax);
}

void pushdown(int k)
{
	if(tree[k].lazy)
	{
		int lz=tree[k].lazy;
		tree[k].lazy=0;
		tree[k<<1].lazy+=lz;
		tree[k<<1].mmax+=lz;
		tree[k<<1|1].lazy+=lz;
		tree[k<<1|1].mmax+=lz;
	}
}

void build(int k,int l,int r)
{
	tree[k].l=l;
	tree[k].r=r;
	tree[k].mmax=tree[k].lazy=0;
	if(l==r)
		return;
	int mid=l+r>>1;
	build(k<<1,l,mid);
	build(k<<1|1,mid+1,r);
}

void update(int k,int l,int r,int val)
{
	if(tree[k].r<l||tree[k].l>r)
		return;
	if(tree[k].l>=l&&tree[k].r<=r)
	{
		tree[k].lazy+=val;
		tree[k].mmax+=val;
		return;
	}
	pushdown(k);
	update(k<<1,l,r,val);
	update(k<<1|1,l,r,val);
	pushup(k);
}

int query(int k)
{
	if(tree[k].mmax<0)
		return inf;
	if(tree[k].l==tree[k].r)
		return tree[k].l;
	pushdown(k);
	if(tree[k<<1].mmax>=0)
		return query(k<<1);
	else
		return query(k<<1|1);
}

void init(int c)
{
	for(int i=1;i<=c;i++)
	{
		pos[i].clear();
		pos[i].push_back(0);
	}
}

int main()
{
#ifndef ONLINE_JUDGE
//  freopen("data.in.txt","r",stdin);
//  freopen("data.out.txt","w",stdout);
#endif
//  ios::sync_with_stdio(false);
	int n,c,k;
	while(scanf("%d%d%d",&n,&c,&k)!=EOF)
	{
		init(c);
		build(1,1,n);
		int ans=0;
		for(int i=1;i<=n;i++)
		{
			int num;
			scanf("%d",&num);
			update(1,pos[num].back()+1,i,-1);
			if(pos[num].size()>k)
				update(1,1,pos[num][pos[num].size()-k],-1);
			pos[num].push_back(i);
			if(pos[num].size()>k)
				update(1,1,pos[num][pos[num].size()-k],1);
			ans=max(ans,i-query(1)+1);
		}
		printf("%d\n",ans);
	}


















    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Frozen_Guardian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值