题目链接:点击查看
题目大意:给出一个长度为 n 的序列,每个数字的范围是 [ 1 , C ] ,现在需要求一个子串,使得字串中的字母,要么出现 0 次,要么出现至少 K 次,问这个子串的最大长度是多少
题目分析:第一反应是二分+尺取,但感觉会超时,正解是线段树,枚举 1 ~ n 作为子串的右端点,然后贪心找符合条件的左端点
对于任意一个位置 i ,再对于任意一个数字 b 来说,设 pos1 是数字 b 从位置 i 向左开始第一次出现的位置,pos2 是第 k 次出现的位置,pos3 是第 k - 1 次出现的位置(下面会用到),则对于数字 b 来说,可以选择的左端点的区间范围是 [ 1 , pos2 ] 和 [ pos1 + 1 , i ]
这样当我们枚举位置 i 时,假设位置 i 的数字为 num ,其前一次出现的位置为 pre,则因为第 i 个位置是 num,所以区间 [ pre + 1 , i ] 这段区间对左端点的贡献集体减一,因为如果还没有第 i 个数字出现的话,那么对于数字 num 来说,区间 [ pre + 1 , i - 1 ] 这段区间对左端点的贡献都为 1 ,所以当加入第 i 个位置的 num 后,需要群体减一
同时,因为新加入了一个 num 的位置,所以原先 [ 1 , pos2 ] 的这段区间扩大到了 [ 1 , pos3 ] 这么大,相当于 [ pos2 + 1 , pos3 ] 这段区间对左端点的贡献集体加一了
因为对于贡献来说,既有群体加一,又有群体减一,所以当一个节点的相对贡献大于等于 0 时,说明当前节点可以选做为左端点,每次处理完后,贪心去寻找相对贡献大于等于 0 的最左端的位置,然后更新答案即可
代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int N=1e5+100;
vector<int>pos[N];
struct Node
{
int l,r,mmax,lazy;
}tree[N<<2];
void pushup(int k)
{
tree[k].mmax=max(tree[k<<1].mmax,tree[k<<1|1].mmax);
}
void pushdown(int k)
{
if(tree[k].lazy)
{
int lz=tree[k].lazy;
tree[k].lazy=0;
tree[k<<1].lazy+=lz;
tree[k<<1].mmax+=lz;
tree[k<<1|1].lazy+=lz;
tree[k<<1|1].mmax+=lz;
}
}
void build(int k,int l,int r)
{
tree[k].l=l;
tree[k].r=r;
tree[k].mmax=tree[k].lazy=0;
if(l==r)
return;
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
}
void update(int k,int l,int r,int val)
{
if(tree[k].r<l||tree[k].l>r)
return;
if(tree[k].l>=l&&tree[k].r<=r)
{
tree[k].lazy+=val;
tree[k].mmax+=val;
return;
}
pushdown(k);
update(k<<1,l,r,val);
update(k<<1|1,l,r,val);
pushup(k);
}
int query(int k)
{
if(tree[k].mmax<0)
return inf;
if(tree[k].l==tree[k].r)
return tree[k].l;
pushdown(k);
if(tree[k<<1].mmax>=0)
return query(k<<1);
else
return query(k<<1|1);
}
void init(int c)
{
for(int i=1;i<=c;i++)
{
pos[i].clear();
pos[i].push_back(0);
}
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("data.in.txt","r",stdin);
// freopen("data.out.txt","w",stdout);
#endif
// ios::sync_with_stdio(false);
int n,c,k;
while(scanf("%d%d%d",&n,&c,&k)!=EOF)
{
init(c);
build(1,1,n);
int ans=0;
for(int i=1;i<=n;i++)
{
int num;
scanf("%d",&num);
update(1,pos[num].back()+1,i,-1);
if(pos[num].size()>k)
update(1,1,pos[num][pos[num].size()-k],-1);
pos[num].push_back(i);
if(pos[num].size()>k)
update(1,1,pos[num][pos[num].size()-k],1);
ans=max(ans,i-query(1)+1);
}
printf("%d\n",ans);
}
return 0;
}