题目链接:点击查看
题目大意:给出 n n n 个位置可以种竹子,每个位置的竹子的高度需要到达 a i a_i ai,所有竹子每天都会长高一个单位高度,同样每个竹子可以在任意位置砍一次,砍过之后竹子将不再长高,现在需要每隔 d d d 天来砍一次竹子,问在保证砍下来的总高度小于等于 k k k 的前提下, d d d 的最大值是多少
题目分析:首先不难看出,在
d
d
d 确定的前提下,所有竹子都应该长到
d
d
d 的一个整数倍,写成公式的形式如下:
∑
i
=
1
n
(
d
∗
⌈
a
i
d
⌉
−
a
i
)
≤
k
⇒
∑
i
=
1
n
(
d
∗
⌈
a
i
d
⌉
)
≤
k
+
∑
i
=
1
n
a
i
⇒
d
∗
∑
i
=
1
n
⌈
a
i
d
⌉
≤
k
+
∑
i
=
1
n
a
i
\begin{aligned} &\sum_{i=1}^{n}(d*\lceil \frac{a_i}{d} \rceil-a_i)\le k \\ &\Rightarrow \sum_{i=1}^{n}(d*\lceil \frac{a_i}{d} \rceil )\le k+\sum_{i=1}^{n}a_i\\ &\Rightarrow d*\sum_{i=1}^{n}\lceil \frac{a_i}{d} \rceil \le k+\sum_{i=1}^{n}a_i \\ \end{aligned}
i=1∑n(d∗⌈dai⌉−ai)≤k⇒i=1∑n(d∗⌈dai⌉)≤k+i=1∑nai⇒d∗i=1∑n⌈dai⌉≤k+i=1∑nai
不难看出公式右侧是一个常量,而公式左侧是一个关于 d d d 作为变量的乘积式子,所以可以枚举 d d d 作为右侧公式的因子然后去检查是否合法
代码:
// #pragma GCC optimize(2)
// #pragma GCC optimize("Ofast","inline","-ffast-math")
// #pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<string>
#include<ctime>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<stack>
#include<climits>
#include<queue>
#include<map>
#include<set>
#include<sstream>
#include<cassert>
#include<bitset>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
template<typename T>
inline void read(T &x)
{
T f=1;x=0;
char ch=getchar();
while(0==isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(0!=isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=f;
}
template<typename T>
inline void write(T x)
{
if(x<0){x=~(x-1);putchar('-');}
if(x>9)write(x/10);
putchar(x%10+'0');
}
const int inf=0x3f3f3f3f;
const int N=1e6+100;
int n;
LL sum,a[N],ans;
void cal(LL d)
{
LL res=0;
for(int i=1;i<=n;i++) res+=(a[i]+d-1)/d*d;
if(res<=sum) ans=max(ans,d);
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("data.in.txt","r",stdin);
// freopen("data.out.txt","w",stdout);
#endif
// ios::sync_with_stdio(false);
read(n),read(sum);
for(int i=1;i<=n;i++) read(a[i]),sum+=a[i];
for(LL i=1;i*i<=sum;i++) cal(i),cal(sum/i);
write(ans);
return 0;
}