509.斐波那契数
思路很简单
注意加上if (N <= 1) return N;
70.爬楼梯
- 确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法 - 确定递推公式
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。 - dp数组如何初始化
dp[1] = 1,dp[2] = 2
考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。 - 确定遍历顺序
前序 - 举例推导dp数组
746.使用最小花费爬楼梯
- 确定dp数组以及下标的含义
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。 - 确定递推公式
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]); - dp数组如何初始化
初始化 dp[0] = 0,dp[1] = 0; - 确定遍历顺序
前序 - 举例推导dp数组