代码随想录第38天|● 509. 斐波那契数 ● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯

文章讲述了如何使用动态规划解决两种爬楼梯问题:斐波那契数列方式和最小花费方式。对于斐波那契数,重点在于递推公式dp[i]=dp[i-1]+dp[i-2],而最小花费问题中,dp[i]是通过选取dp[i-1]+cost[i-1]和dp[i-2]+cost[i-2]中的最小值来确定的。
摘要由CSDN通过智能技术生成

509.斐波那契数

思路很简单
注意加上if (N <= 1) return N;

70.爬楼梯

  1. 确定dp数组以及下标的含义
    dp[i]: 爬到第i层楼梯,有dp[i]种方法
  2. 确定递推公式
    首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
    还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
    那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
    所以dp[i] = dp[i - 1] + dp[i - 2] 。
  3. dp数组如何初始化
    dp[1] = 1,dp[2] = 2
    考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。
  4. 确定遍历顺序
    前序
  5. 举例推导dp数组
    在这里插入图片描述

746.使用最小花费爬楼梯

  1. 确定dp数组以及下标的含义
    dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。
  2. 确定递推公式
    dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
    dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
    那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
    一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
  3. dp数组如何初始化
    初始化 dp[0] = 0,dp[1] = 0;
  4. 确定遍历顺序
    前序
  5. 举例推导dp数组
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值