ComSec4

ComSec 4


10.1

请添加图片描述

  • a
    Y A = α X A   m o d   q Y_A=\alpha^{X_A}\,mod\,q YA=αXAmodq
         = 5 15   m o d   157 =5^{15}\, mod\,157 =515mod157
         = 5 8 ⋅ 5 6 ⋅ 5 1   m o d   157 =5^{8}·5^{6}·5^{1}\, mod\,157 =585651mod157
         = 79 =79 =79
  • b
    Y B = α X B   m o d   q Y_B=\alpha^{X_B}\,mod\,q YB=αXBmodq
         = 5 27   m o d   157 =5^{27}\, mod\,157 =527mod157
         = ( 5 8 ) 3 ⋅ 5 2 ⋅ 5 1   m o d   157 =(5^{8})^3·5^{2}·5^{1}\, mod\,157 =(58)35251mod157
         = 65 =65 =65
  • c
    K A B = ( Y B ) X A   m o d   q K_{AB}=(Y_B)^{X^A}\,mod\,q KAB=(YB)XAmodq
          = ( Y A ) X B   m o d   q =(Y_A)^{X^B}\,mod\,q =(YA)XBmodq
          = α X A X B   m o d   q =\alpha^{X_AX_B}\,mod\,q =αXAXBmodq
          = 5 15 ⋅ 27   m o d   157 =5^{15·27}\, mod\,157 =51527mod157
          = 5 405   m o d   157 =5^{405}\, mod\,157 =5405mod157
         = ( 5 4 ) 100 + 5 5   m o d   157 =(5^{4})^{100}+5^{5}\, mod\,157 =(54)100+55mod157
          = 78 =78 =78

10.2

请添加图片描述

  • a(求的应该是 X B X_B XB?)
    ∵   Y B = α X B   m o d   q \because\,Y_B=\alpha^{X_B}\,mod\,q YB=αXBmodq
        10 = 5 X B   m o d   23 10=5^{X_B}\,mod\,23 10=5XBmod23
    ∵   5 2   m o d   23 = 2 \because\,5^2\,mod\,23=2 52mod23=2
    5   m o d   23 = 5 5\,mod\,23=5 5mod23=5
    ∴   10 = 5 2   m o d   23 ∗ 5   m o d   23 = 5 2 ⋅ 5   m o d   23 = 5 3   m o d   23 \therefore\,10=5^2\,mod\,23*5\,mod\,23=5^2·5\,mod\,23=5^3\,mod\,23 10=52mod235mod23=525mod23=53mod23
    ∴   X B = 3 \therefore\,X_B=3 XB=3

  • b
    K A B = ( Y A ) X B   m o d   q K_{AB}=(Y_A)^{X^B}\,mod\,q KAB=(YA)XBmodq
          = 8 3   m o d   23 =8^3\,mod\,23 =83mod23
          = 6 =6 =6

  • c
    ∵   q = 23 \because\,q=23 q=23
    ∴   ϕ ( q ) = 22 = 2 ∗ 11 \therefore\,\phi(q)=22=2*11 ϕ(q)=22=211
    5 2   m o d   23 = 2 , ≠ 1 5^2\,mod\,23=2,\not=1 52mod23=2,=1
    5 11   m o d   23 = 22 , ≠ 1 5^{11}\,mod\,23=22,\not=1 511mod23=22,=1
    ∴   都 不 等 于 1 , 所 以 5 是 23 的 原 根 \therefore\,都不等于1,所以5是23的原根 1523

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值