本题的要求很简单,就是求N
个数字的和。麻烦的是,这些数字是以有理数分子/分母
的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N
(≤100)。随后一行按格式a1/b1 a2/b2 ...
给出N
个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分
,其中分数部分写成分子/分母
,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
代码展示:
#include<stdio.h>
#include<string.h>
#include<math.h>
void read(char *num,long long *a,long long *b)
{
int next = 0;
int start = 0;
if(num[0] == '-')
start = 1;
for(long long i = start;i < strlen(num);i++)
{
if(num[i] == '/')
{
next = 1;
}
else if(next == 0)
{
*a = *a*10 + num[i] - '0';
}else{
*b = *b*10 + num[i] - '0';
}
}
if(start == 1)
*a = -*a;
}
long long GCD(long long a,long long b)
{
a = abs(a);
b = abs(b);
if(a > b)
{
a = a+b;
b = a-b;
a = a-b;
}
for(long long i = a;i > 0;i--)
{
if(b%i == 0&& a%i == 0)
{
return i;
}
}
return 1;
}
void add(long long *a,long long *b,long long a1,long long b1)
{
long long j=GCD(*a,*b);
long long k=GCD(a1,b1);
*a = *a/j;
*b = *b/j;
a1 = a1/k;
b1 = b1/k;
*a = *a*b1 + *b*a1;
*b = *b*b1;
long long m = GCD(*a,*b);
*a = *a/m;
*b = *b/m;
}
int main()
{
int N;
scanf("%d",&N);
long long a = 0,b = 0;
long long a1 = 0,b1 = 0;
char num[20];
scanf("%s",num);
read(num,&a,&b);
for(int i = 1;i < N;i++)
{
scanf("%s",num);
read(num,&a1,&b1);
add(&a,&b,a1,b1);
a1 = 0;
b1 = 0;
}
if(a>b && a%b != 0)
printf("%lld %lld/%lld",a/b,a%b,b);
else if(a%b == 0)
printf("%lld",a/b);
else
printf("%lld/%lld",a,b);
return 0;
}