将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,⋯}和N2={m1,m2,⋯},若存在i使得n1=m1,⋯,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
代码展示:
#include<stdio.h>
int n;
int count = 1;
void print(int *num,int len)
{
printf("%d=",n);
for(int i = 0;i < len-1;i++)
{
printf("%d+",num[i]);
}
printf("%d",num[len-1]);
if(count%4 == 0)
{
printf("\n");
}else if(num[0] == n){
}else{
printf(";");
}
count++;
}
void func(int *num,int sub)
{
if(sub == -1)
{
//print(num,1);
}else{
int sum = num[sub]+num[sub+1];
int sub2 = sub;
int fen = num[sub]+1;
if(sum - fen >= fen)
{
while(sum - fen >= 0)
{
sum -= fen;
num[sub2] = fen;
sub2++;
}
num[sub2-1] += sum;
print(num,sub2);
func(num,sub2-2);
}else{
num[sub] = sum;
print(num,sub2+1);
func(num,sub-1);
}
}
}
int main()
{
scanf("%d",&n);
int num[n];
for(int i = 0;i < n;i++)
{
num[i] = 1;
}
print(num,n);
func(num,n-2);
}