【刷题记录】7-7 整数分解为若干项之和

将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。

输入格式:

每个输入包含一个测试用例,即正整数N (0<N≤30)。

输出格式:

按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1​={n1​,n2​,⋯}和N2​={m1​,m2​,⋯},若存在i使得n1​=m1​,⋯,ni​=mi​,但是ni+1​<mi+1​,则N1​序列必定在N2​序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。

输入样例:

7

输出样例:

7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7

 代码展示:

#include<stdio.h>

int n;
int count = 1;
void print(int *num,int len)
{
    printf("%d=",n);
    for(int i = 0;i < len-1;i++)
    {
        printf("%d+",num[i]);
    }
    printf("%d",num[len-1]);
    if(count%4 == 0)
    {
        printf("\n");
    }else if(num[0] == n){
        
    }else{
        printf(";");
    }
    count++;
}

void func(int *num,int sub)
{
    if(sub == -1)
    {
        //print(num,1);
    }else{
        int sum = num[sub]+num[sub+1];
        int sub2 = sub;
        int fen = num[sub]+1;
        if(sum - fen >= fen)
        {
            while(sum - fen >= 0)
            {
                sum -= fen;
                num[sub2] = fen;
                sub2++;
            }           
            num[sub2-1] += sum;
            print(num,sub2);
            func(num,sub2-2);
        }else{
            num[sub] = sum;
            print(num,sub2+1);
            func(num,sub-1);
        }
    }
}

int main()
{
    scanf("%d",&n);

    int num[n];
    for(int i = 0;i < n;i++)
    {
        num[i] = 1;
    }
    print(num,n);

    func(num,n-2);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值