第九章 动态规划 part05 1049. 最后一块石头的重量II 494. 目标和 474. 一和零

第四十三天| 第九章 动态规划 part05 1049. 最后一块石头的重量II 494. 目标和 474. 一和零

一、1049. 最后一块石头的重量II

  • 题目链接:https://leetcode.cn/problems/last-stone-weight-ii/

  • 题目介绍:

    • 有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

      每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

      • 如果 x == y,那么两块石头都会被完全粉碎;
      • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

      最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

      示例 1:

      输入:stones = [2,7,4,1,8,1]
      输出:1
      解释:
      组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
      组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
      组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
      组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
      
  • 思路:

    • 怎么样得到的就是最小值呢?
    • 将数组分成两份,即两个背包。取每个背包中装的最大值,两个相撞得到的就是最小值
    • 所以就将本题中要求的“返回此石头最小的可能重量”转换为求一个容量为sum/2的背包中,能装的最大重量。
  • 代码:

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for (int stone : stones) {
            sum += stone;
        }
        int target = sum/2;
        // (1)明确dp[j]含义:表示的是容量为j的背包中能放入的石头的最大重量之和
        int[] dp = new int[target + 1];
        // (3)初始化,跳过,全部初始化为0
        // (4)确定遍历顺序
        for (int i = 0; i < stones.length; i++) {
            for (int j = target; j >= stones[i]; j--) {
                // (2)确定递推公式
                dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        // 为什么是用另一个背包的重量,减去dp[target]呢?
        // 是因为target = sum / 2,相当于向下取整,即这个背包中能装的重量一定小于或等于sum的一半,即背包中的重量更少
        return (sum - dp[target]) - dp[target];
    }
}
  • 注意:
    • 为什么是用另一个背包的重量,减去dp[target]呢?
    • 是因为target = sum / 2,相当于向下取整,即这个背包中能装的重量一定小于或等于sum的一半,即背包中的重量更少

二、494. 目标和

  • 题目链接:https://leetcode.cn/problems/target-sum/

  • 题目介绍:

    • 给你一个非负整数数组 nums 和一个整数 target

      向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

      • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

      返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

      示例 1:

      输入:nums = [1,1,1,1,1], target = 3
      输出:5
      解释:一共有 5 种方法让最终目标和为 3 。
      -1 + 1 + 1 + 1 + 1 = 3
      +1 - 1 + 1 + 1 + 1 = 3
      +1 + 1 - 1 + 1 + 1 = 3
      +1 + 1 + 1 - 1 + 1 = 3
      +1 + 1 + 1 + 1 - 1 = 3
      
  • 思路:

    • 和前两到题的思路是一样的,将整个数组分为两个部分,一部分是正数,一部分是负数

    • 背包的最大容量计算公式如下:

      • left表示正数集合
        right表示负数集合
        left + right = sum;
        left - right = target; => right = left - target;
        left + (left - target) = sum;
        即:
        	left = (sum + target) / 2;
        	很明显,如果不能整除说明无法得到target,直接return 0;
        
    • DP五部曲:

      • (1)确定dp[j]含义:

        • dp[j]表示的是:装满背包容量为j的方法
          
      • (2)确定递推公式:

        • 不放nums[i]:

          • 如果不放dp[j],那么就是dp[j]种方法能装满容量为j的背包,因为对于二维数组而言,这个dp[j]就是从上一层拷贝来的
            
        • 放nums[i]:

          • 如果放nums[i],那么装满容量为j的背包的方法就有dp[j-nums[i]] * 1种,为什么是乘以1,因为放nums[i]这算1种方法。
            
        • 所以递推公式:

          • dp[j] += dp[j-nums[i]];
            
      • (3)dp数组初始化:

        • dp[0] = 1;
          
        • 为什么要把dp[0]初始化为1,可以从下图中理解:

          • 如果dp[0] = 0,那么整个数组就全是0了
          • 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
      • (4)确定遍历顺序

        • 正序遍历物品,倒序遍历背包
  • 代码:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        if (sum < Math.abs(target)) return 0;
        if ((sum + target) % 2 != 0) return 0;
        int bagSize = (sum + target) / 2;
        int[] dp = new int[bagSize + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = bagSize; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[bagSize];
    }
}

总结:

  • 分割等和子集、最后一块石头的重量II、目标和三道题都是01背包的应用,他们解决问题的思路可以从三个角度应用01背包的思路:

    • (1)分割等和子集:将给定数组分为两个集合,背包的最大容量是数组总和的一半,判断该数组能否装满这个背包,能装满返回true,否则返回false

      • 如果背包重量之和无法整除2,说明该数组不可能被分割为等和子集
    • (2)最后一块石头的重量II:将给定数组分为两个集合,背包的最大容量是数组总和的一半,尽可能去装满该背包,那么两个背包相减剩下的石头重量就是最小的

      • 背包重量之和除以2向下取整,装满该背包之后,该背包的重量小于等于物品总重的一半,那么剩下的物品之和就大于这个背包的重量,用剩下的减去背包的最大重量就是最后一块石头的最小重量
    • (3)目标和:将给定数组分为两个集合(一个正数,一个负数),背包的最大容量是数组总和的一半,返回的是装满该背包的方法有多少种

三、474. 一和零

  • 题目链接:https://leetcode.cn/problems/ones-and-zeroes/

  • 题目介绍:

    • 给你一个二进制字符串数组 strs 和两个整数 mn

      请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

      如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

      示例 1:

      输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
      输出:4
      解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
      其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
      
  • 思路:

    • 本题中strs 数组里的元素就是物品,每个物品都是一个!

      而m 和 n相当于是一个背包,两个维度的背包

    • 所以本题还是一个01背包的问题,只不过背包是二维的

    • DP五部曲:

      • (1)确定dp及下标含义

        • 背包要装的的m个0和n个1,所以定义一个二维dp数组
          dp[i][j]:表示的是装满i个0和j个1,最大子集的个数是dp[i][j]
          
      • (2)确定递推公式:

        • max括号中的前者是不放该str,后者是放该str
          dp[i][j] = Math.max(dp[i][j], dp[i-zeroNum][j-oneNum] + 1);
          
      • (3)初始化dp数组:

        • 都初始化为0即可
      • (4)确定遍历顺序:

        • 先遍历物品,再遍历背包
  • 代码:

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m+1][n+1];
        for(String str : strs) {
            int zeroNum = 0;
            int oneNum = 0;
            for (char ch : str.toCharArray()) {
                if (ch == '0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }
            for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j>= oneNum; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值