第四十三天| 第九章 动态规划 part05 1049. 最后一块石头的重量II 494. 目标和 474. 一和零
一、1049. 最后一块石头的重量II
-
题目链接:https://leetcode.cn/problems/last-stone-weight-ii/
-
题目介绍:
-
有一堆石头,用整数数组
stones
表示。其中stones[i]
表示第i
块石头的重量。每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为
x
和y
,且x <= y
。那么粉碎的可能结果如下:- 如果
x == y
,那么两块石头都会被完全粉碎; - 如果
x != y
,那么重量为x
的石头将会完全粉碎,而重量为y
的石头新重量为y-x
。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回
0
。示例 1:
输入:stones = [2,7,4,1,8,1] 输出:1 解释: 组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1], 组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1], 组合 2 和 1,得到 1,所以数组转化为 [1,1,1], 组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
- 如果
-
-
思路:
- 怎么样得到的就是最小值呢?
- 将数组分成两份,即两个背包。取每个背包中装的最大值,两个相撞得到的就是最小值
- 所以就将本题中要求的“返回此石头最小的可能重量”转换为求一个容量为sum/2的背包中,能装的最大重量。
-
代码:
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for (int stone : stones) {
sum += stone;
}
int target = sum/2;
// (1)明确dp[j]含义:表示的是容量为j的背包中能放入的石头的最大重量之和
int[] dp = new int[target + 1];
// (3)初始化,跳过,全部初始化为0
// (4)确定遍历顺序
for (int i = 0; i < stones.length; i++) {
for (int j = target; j >= stones[i]; j--) {
// (2)确定递推公式
dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
// 为什么是用另一个背包的重量,减去dp[target]呢?
// 是因为target = sum / 2,相当于向下取整,即这个背包中能装的重量一定小于或等于sum的一半,即背包中的重量更少
return (sum - dp[target]) - dp[target];
}
}
- 注意:
- 为什么是用另一个背包的重量,减去dp[target]呢?
- 是因为target = sum / 2,相当于向下取整,即这个背包中能装的重量一定小于或等于sum的一半,即背包中的重量更少
二、494. 目标和
-
题目链接:https://leetcode.cn/problems/target-sum/
-
题目介绍:
-
给你一个非负整数数组
nums
和一个整数target
。向数组中的每个整数前添加
'+'
或'-'
,然后串联起所有整数,可以构造一个 表达式 :- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于
target
的不同 表达式 的数目。示例 1:
输入:nums = [1,1,1,1,1], target = 3 输出:5 解释:一共有 5 种方法让最终目标和为 3 。 -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3
- 例如,
-
-
思路:
-
和前两到题的思路是一样的,将整个数组分为两个部分,一部分是正数,一部分是负数
-
背包的最大容量计算公式如下:
-
left表示正数集合 right表示负数集合 left + right = sum; left - right = target; => right = left - target; left + (left - target) = sum; 即: left = (sum + target) / 2; 很明显,如果不能整除说明无法得到target,直接return 0;
-
-
DP五部曲:
-
(1)确定dp[j]含义:
-
dp[j]表示的是:装满背包容量为j的方法
-
-
(2)确定递推公式:
-
不放nums[i]:
-
如果不放dp[j],那么就是dp[j]种方法能装满容量为j的背包,因为对于二维数组而言,这个dp[j]就是从上一层拷贝来的
-
-
放nums[i]:
-
如果放nums[i],那么装满容量为j的背包的方法就有dp[j-nums[i]] * 1种,为什么是乘以1,因为放nums[i]这算1种方法。
-
-
所以递推公式:
-
dp[j] += dp[j-nums[i]];
-
-
-
(3)dp数组初始化:
-
dp[0] = 1;
-
为什么要把dp[0]初始化为1,可以从下图中理解:
- 如果dp[0] = 0,那么整个数组就全是0了
-
-
(4)确定遍历顺序
- 正序遍历物品,倒序遍历背包
-
-
-
代码:
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum < Math.abs(target)) return 0;
if ((sum + target) % 2 != 0) return 0;
int bagSize = (sum + target) / 2;
int[] dp = new int[bagSize + 1];
dp[0] = 1;
for (int i = 0; i < nums.length; i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
}
总结:
-
分割等和子集、最后一块石头的重量II、目标和三道题都是01背包的应用,他们解决问题的思路可以从三个角度应用01背包的思路:
-
(1)分割等和子集:将给定数组分为两个集合,背包的最大容量是数组总和的一半,判断该数组能否装满这个背包,能装满返回true,否则返回false;
- 如果背包重量之和无法整除2,说明该数组不可能被分割为等和子集
-
(2)最后一块石头的重量II:将给定数组分为两个集合,背包的最大容量是数组总和的一半,尽可能去装满该背包,那么两个背包相减剩下的石头重量就是最小的
- 背包重量之和除以2向下取整,装满该背包之后,该背包的重量小于等于物品总重的一半,那么剩下的物品之和就大于这个背包的重量,用剩下的减去背包的最大重量就是最后一块石头的最小重量
-
(3)目标和:将给定数组分为两个集合(一个正数,一个负数),背包的最大容量是数组总和的一半,返回的是装满该背包的方法有多少种
-
三、474. 一和零
-
题目链接:https://leetcode.cn/problems/ones-and-zeroes/
-
题目介绍:
-
给你一个二进制字符串数组
strs
和两个整数m
和n
。请你找出并返回
strs
的最大子集的长度,该子集中 最多 有m
个0
和n
个1
。如果
x
的所有元素也是y
的元素,集合x
是集合y
的 子集 。示例 1:
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3 输出:4 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
-
-
思路:
-
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。
-
所以本题还是一个01背包的问题,只不过背包是二维的
-
DP五部曲:
-
(1)确定dp及下标含义
-
背包要装的的m个0和n个1,所以定义一个二维dp数组 dp[i][j]:表示的是装满i个0和j个1,最大子集的个数是dp[i][j]
-
-
(2)确定递推公式:
-
max括号中的前者是不放该str,后者是放该str dp[i][j] = Math.max(dp[i][j], dp[i-zeroNum][j-oneNum] + 1);
-
-
(3)初始化dp数组:
- 都初始化为0即可
-
(4)确定遍历顺序:
- 先遍历物品,再遍历背包
-
-
-
代码:
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m+1][n+1];
for(String str : strs) {
int zeroNum = 0;
int oneNum = 0;
for (char ch : str.toCharArray()) {
if (ch == '0') {
zeroNum++;
} else {
oneNum++;
}
}
for (int i = m; i >= zeroNum; i--) {
for (int j = n; j>= oneNum; j--) {
dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
}