蒟蒻的做法是:状压DP
前言:这是蒟蒻的第三篇题解, 请大家多多指教!QwQ
第一眼看到题目, 暴力? 枚举?(我太蒟了)。想了半天看了一眼算法标签:状态压缩。 于是乎, 蒟蒻我看了看数据范围, N <= 10000, C <= 50000. “这怎么压啊”(我太蒟了)。 然后疯狂在题目中找线索。
About 10min later, 我发现了这么一句话:
每个小朋友站在大围栏圈的外面,可以看到连续的 5 个围栏
“好吧, 其实可以压的!”(我太蒟了)。然后我就在设状态和想方程。
状态 : F[S][i] 为考虑到第i个围栏, [i, i + 5) 中围栏存在状态为S时小盆友最多开心数
方程 : F[S][i] = max(F[(S & 15) << 1][i - 1], F[(S & 15) << 1 | 1][i - 1]) + Fun[S][i];
注: 15(10) = 0111(2), 作用为取前四位数.
Fun[S][i] 表示在i位置上的小盆友(们)在 [i, i + 5) 中围栏存在状态为时开心的人数。所以转移时不会重复计算人数。
F数组可以滚动优化
重要的是,动物园是一个环, 所以到第n个围栏时的状态S的后四位必须与第1个围栏的前四为的状态相同.所以我们可以在外面枚举第n行的状态
代码中有注释。
#include <bits/stdc++.h>
using namespace std;
const int N = 10000;
int F[1 << 5][2], Fun[1 << 5][N + 10], n, c;
void Init();
int DP();
int main() {
return Init(), printf("%d\n", DP()) & 0;
}
void Init() {
scanf("%d%d", &n, &c);
for(int K = 1; K <= c; K ++) {
int E, F, L, tap, s1 = 0, s2 = 0;
scanf("%d%d%d", &E, &F, &L);
for(int i = 1; i <= F; i ++)
scanf("%d", &tap), s1 |= (1 << ((tap - E + n) % n)); //处理这个小盆友在[i, i + 5)围栏中害怕的状态
for(int i = 1; i <= L; i ++)
scanf("%d", &tap), s2 |= (1 << ((tap - E + n) % n)); //处理这个小盆友在[i, i + 5)围栏中喜欢的状态
for(int i = 0; i < (1 << 5); i ++)
if((i & s2) || ((~i) & s1)) ++Fun[i][E]; //预处理Fun数组
}
}
int DP() {
int ans = 0;
for(int i = 0; i < (1 << 5); i ++) { //枚举第n个围栏的状态
memset(F, 0x80, sizeof(F)); //初始化为极小值, 让后面的值按照合法状态更新
F[i][0] = 0;
for(int k = 1; k <= n; k ++)
for(int j = 0; j < (1 << 5); j ++)
F[j][k % 2] = max(F[(j & 15) << 1][(k - 1) % 2], F[(j & 15) << 1 | 1][(k - 1) % 2]) + Fun[j][k]; //转移
ans = max(ans, F[i][n % 2]); //更新合法答案
} return ans;
}