- 博客(5)
- 收藏
- 关注
原创 机器学习 (五)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结第六章 支持向量机6.1 间隔与支持向量分类学习的基本思想就是基于训练集在样本空间中找到一个划分的超平面,将不同类别的样本分开。那么,什么样的划分是最优的呢?直观来看,找位于两类训练样本的“正中间”是最好的划分面因为这样的划分对局部扰动的容忍性最高。那么我们应该如何量化度量这个最好划分面呢?超平面:决策平面.
2021-07-29 20:02:11 603
原创 机器学习(四)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考5.1 神经元模型示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务
2021-07-25 20:37:35 424
原创 机器学习 (三)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分
2021-07-22 12:05:06 318
原创 机器学习(二)
文章目录前言 一、pandas 二、使用步骤 1.引入库 2.读入数据 总结第三章 线性模型提示:以下是本篇文章正文内容,下面案例可供参考3.1 基本形式线性模型(Linear Model):通过属性的线性组合来进行预测的函数,许多更为强大的非线性模型(Nonlinear Model)可在线性模型基础上引入层级结构(Hierarchical Structure)或高级映射(Advanced Mapping)而得:一般写成以下形式,在w和b学得之后模型...
2021-07-19 21:42:03 288
原创 2021-07-13
机器学习(1)第1章 绪论机器学习(1)1、基本概念和术语1.引入库2.1经验误差与过拟合1.引入库2.读入数据总结1、基本概念和术语1.引入库机器学习是致力于通过计算的手段,利用数据来改善系统自身的性能的学科。根据预测结果的类型,可以将机器学习任务分为二类。**分类:**预测结果的类型是离散值,例如"好瓜",“坏瓜”;**回归:**预测结果的类型是连续值,例如西瓜的成熟度0.37、0.95。根据训练数据是否拥有标记信息,学习任务也可大致划分为两大类。**监督学习(supervised l
2021-07-13 17:23:58 234
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人