矩阵乘法
ssl_ljh
欢迎回家,珂朵莉.
展开
-
[矩阵乘法] PKU3233 Matrix Power Series
[矩阵乘法]裴波拉契数列IV[矩阵乘法]裴波拉契数列IV[矩阵乘法]裴波拉契数列IV Description 求数列f[n]=f[n-2]+f[n-1]+n+1的第N项,其中f[1]=1,f[2]:=1. Input n(1<n<231-1) Output 一个数为裴波拉契数列的第n项mod 9973; Sample Input 10000 Sample Output 4399 题目解析 对于为什么用矩阵乘法来做,详见博客斐波那契数列II 关于递推式略, 详见博客斐波那契数列III,并请独自尝试通原创 2020-12-18 21:32:33 · 258 阅读 · 1 评论 -
[矩阵乘法]斐波那契数列IV
[矩阵乘法]裴波拉契数列IV[矩阵乘法]裴波拉契数列IV[矩阵乘法]裴波拉契数列IV Description 求数列f[n]=f[n-2]+f[n-1]+n+1的第N项,其中f[1]=1,f[2]:=1. Input n(1<n<231-1) Output 一个数为裴波拉契数列的第n项mod 9973; Sample Input 10000 Sample Output 4399 题目解析 对于为什么用矩阵乘法来做,详见博客斐波那契数列II 关于递推式略, 详见博客斐波那契数列III,并请独自尝试通原创 2020-12-16 17:04:28 · 339 阅读 · 0 评论 -
[矩阵乘法]裴波拉契数列III
[矩阵乘法]裴波拉契数列III[矩阵乘法]裴波拉契数列III[矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N项.f[1]=1,f[2]=1. Input n(1<n<231-1) Output 一个数为裴波拉契数列的第n项mod 9973; Sample Input 12345 Sample Output 8932 题目解析 对于为什么用矩阵乘法来做,详见博客斐波那契数列II 我们考虑矩阵⊏f[n−2],f[n−1],1⊐\sqsubse原创 2020-12-16 16:48:03 · 314 阅读 · 0 评论 -
[矩阵乘法]裴波拉契数列II
[矩阵乘法]裴波拉契数列II[矩阵乘法]裴波拉契数列II[矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 144…的数列,求裴波拉契数列的第n项。 Input n (1< n <2^31) Output 一个数为裴波拉契数列的第n项mod 10000; Sample Input 123456789 Sample Output 4514 题目解析 首先看题面,是斐波那契数列。首先想到递归,但考虑到N的值比较大,就想办法将时间原创 2020-12-12 16:25:46 · 332 阅读 · 0 评论