LRU 缓存淘汰策略是非常常见的 淘汰算法,还有 LFU(最近最不常使用算法)等
在 Redis 中,如果键值对所占内存达到了所设置的 maxMemory 最大内存则会执行淘汰策略,比如 LRU、LFU 等
在技术面试中,LRU 也是手撕代码环节中的常见考点!所以我们应该牢牢掌握 LRU 的设计。
LRU 的要求:O(1) 复杂度的插入和获取,以及在超过 capacity 限制后,按照最久未使用的策略淘汰旧值,并插入新值,复杂度均为 O(1)。
核心思路:双向链表 + 哈希表。哈希表提供可以在 O(1) 复杂度下 get、put、remove 对应键的节点的能力,双向链表提供模拟访问队列的能力,被访问的节点移到链表头,将被淘汰的节点在链表尾,所以需要双向链表!
力扣题目链接:https://leetcode.cn/problems/lru-cache/submissions/
class LRUCache {
class ListNode {
int key;
int value;
ListNode prev;
ListNode next;
public ListNode() {}
public ListNode(int key, int value) {
this.key = key;
this.value = value;
}
}
HashMap<Integer, ListNode> map;
ListNode head, tail;
int capacity;
public LRUCache(int capacity) {
this.capacity = capacity;
map = new HashMap<>();
head = new ListNode(-1, -1);
tail = new ListNode(-1, -1);
head.next = tail;
tail.prev = head;
}
public int get(int key) {
ListNode node = map.get(key);
if (node == null) {
return -1;
} else {
moveToHead(node);
return node.value;
}
}
public void put(int key, int value) {
ListNode node = map.get(key);
if (node != null) {
node.value = value;
moveToHead(node);
map.put(key, node);
} else {
if (map.size() >= capacity) {
ListNode del = tail.prev;
deleteNode(del);
map.remove(del.key);
}
node = new ListNode(key, value);
insertNode(node);
map.put(key, node);
}
}
private void deleteNode(ListNode node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
private void insertNode(ListNode node) {
node.next = head.next;
head.next.prev = node;
node.prev = head;
head.next = node;
}
private void moveToHead(ListNode node) {
deleteNode(node);
insertNode(node);
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/