- 博客(19)
- 收藏
- 关注
原创 MNIST-手写数字识别分类案例
本文展示了一个使用PyTorch实现的MNIST手写数字识别神经网络。主要内容包括:1) 数据加载与预处理,将MNIST数据集转换为PyTorch张量;2) 定义两层全连接神经网络模型(MnistNN),包含Dropout正则化;3) 使用Adam优化器和交叉熵损失函数进行模型训练;4) 实现了完整的训练流程,包括批量训练、验证集评估和准确率计算。实验结果表明,该模型在验证集上能达到较高识别准确率。代码结构清晰,包含详细注释,展示了PyTorch深度学习项目的基本实现流程。
2025-12-19 18:42:53
115
原创 第一部分-机器学习基础-2.1基本概念
本文通过挑选芒果的实例,阐述了机器学习的基本概念与流程。介绍了特征向量、标签、样本和数据集等核心元素,说明了训练集和测试集的作用。描述了训练过程中寻找最优函数的目标,以及预测评估时准确率的计算方法。最后概括了从输入特征到输出预测的完整机器学习流程,为理解机器学习提供了直观的入门示例。全文以芒果挑选为喻,生动展现了机器学习的基本框架和运作原理。
2025-12-06 18:22:08
238
原创 第一部分-机器学习基础-第二章机器学习概述
机器学习是让计算机从数据中自动学习规律并进行预测的方法。它源于模式识别领域,现已发展为更通用的概念。机器学习特别适用于对人类简单但对编程描述困难的任务(如手写识别),通过数据驱动方式(收集样本-训练模型-预测)而非硬编码规则来解决问题。其本质是从"编写具体规则"转向"让计算机从示例中自行总结规律",有效解决了感知类任务的实现难题。
2025-12-04 11:15:20
288
原创 第一部分-机器学习基础-1.5神经网络
摘要:神经网络发展经历了五个阶段:1943-1969年模型提出阶段;1969-1983年冰河期;1983-1995年反向传播算法带来的复兴;1995-2006年流行度降低;2006年至今深度学习的崛起。其核心线索包括:从生物学的赫布理论到反向传播算法的学习机制突破,从单层感知器到深度网络的模型演进,以及算法突破与算力提升推动的乐观-批判-复兴-冷遇-爆发;循环发展。最终在大数据与GPU算力支持下,深度学习成为AI主流范式。
2025-12-03 09:01:00
518
原创 第一部分-机器学习基础-1.4深度学习
摘要:深度学习通过多层非线性转换实现自动特征学习,摆脱人工特征工程的依赖。其核心挑战是贡献度分配问题,神经网络利用反向传播算法有效解决这一难题。深度学习天然支持端到端学习范式,具有目标一致性和避免错误累积的优势。这种技术革新实现了从人工设计特征到自动学习模型的转变,成为实现高水平表示学习的强大方法。
2025-12-03 08:49:24
177
原创 第一部分-机器学习基础-1.3表示学习
表示学习是机器学习发展的关键进阶,旨在自动化地从数据中学习具有高层语义、可迁移的分布式表示,以解决语义鸿沟问题。其核心突破在于摒弃了依赖人工、解释性强但能力有限的局部表示,转而采用能够编码丰富信息与关系的低维分布式表示,并通过深层神经网络结构实现从原始数据到高级表示的端到端学习。这为深度学习在复杂任务上的成功奠定了基础。
2025-12-02 08:00:26
290
原创 第一部分-机器学习基础-1.2机器学习
本文探讨了机器学习的核心概念与流程,指出其本质是从数据中学习规律并进行预测。传统机器学习依赖人工特征工程,需经过数据预处理、特征提取和转换等步骤,这些环节往往耗费80%以上的工作量。由于特征处理高度依赖专家经验且对结果影响显著,传统方法的性能瓶颈主要在于手工特征处理流程。这一局限性正是深度学习兴起的关键原因,后者能够自动从原始数据中学习特征。文章揭示了机器学习从"特征工程+预测模型"范式向自动化特征学习演进的内在逻辑。
2025-12-02 07:52:57
414
原创 第一部分-机器学习基础-1.1人工智能
摘要: 人工智能(AI)旨在让机器具备类人智能,其发展经历了推理期(逻辑规则)、知识期(专家系统)和学习期(机器学习)三个阶段。核心流派包括符号主义(基于逻辑与规则)和连接主义(仿神经网络),分别侧重可解释性和复杂任务处理。尽管AI在单项任务上超越人类,通用智能仍面临挑战。当前趋势融合两大流派,探索更强大的可解释模型。图灵测试与达特茅斯会议奠定了AI学科基础,研究聚焦感知、学习与认知三大能力。
2025-12-01 19:02:25
916
原创 第一部分-机器学习基础-第一章绪论
深度学习是机器学习的重要分支,通过多层次非线性模型从数据中自动学习规律。其核心是解决贡献度分配问题(CAP),主流方法为人工神经网络。深度学习最初用于表示学习,现已扩展到推理、决策等更广泛AI任务,在计算机视觉、自然语言处理等领域取得显著成果。通过逐层特征抽象,深度学习显著提升了机器的感知与认知能力,成为推动AI发展的重要动力。
2025-12-01 18:52:59
139
原创 理解GCN并对公式进行推导
本文介绍了图卷积网络(GCN)的核心原理及其公式推导。针对图结构数据半监督分类问题,GCN通过谱图卷积的一阶近似实现高效信息传播。
2025-10-22 20:44:04
1451
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅