第十一届蓝桥杯第二次省赛—填空题E题.七段码
题目描述:
小蓝要用七段码数码管来表示一种特殊的文字。
上图给出了七段码数码管的一个图示,数码管中一共有 7 段可以发光的二
极管,分别标记为 a, b, c, d, e, f, g。
小蓝要选择一部分二极管(至少要有一个)发光来表达字符。在设计字符的表达时,要求所有发光的二极管是连成一片的。
例如:b 发光,其他二极管不发光可以用来表达一种字符。
例如:c 发光,其他二极管不发光可以用来表达一种字符。这种方案与上一行的方案可以用来表示不同的字符,尽管看上去比较相似。
例如:a, b, c, d, e 发光,f, g 不发光可以用来表达一种字符。
例如:b, f 发光,其他二极管不发光则不能用来表达一种字符,因为发光的二极管没有连成一片。请问,小蓝可以用七段码数码管表达多少种不同的字符?
答案:80
思路: dfs搜索所有状态,判断每种状态可不可行。判断的方法是把每条灯管当作一个节点,编号,连边建图,对搜索出的亮灯方案使用并查集判断点亮的灯管是否在同一个集合。
//AC code
#include<bits/stdc++.h>
using namespace std;
const int N = 10;
int use[N], ans, e[N][N], fa[N];
void init(){
/*
连边建图,e[i][j] == 1表示第i段和第j段灯管相邻
a b c d e f g
1 2 3 4 5 6 7
*/
e[1][2] = e[1][6] = 1;
e[2][1] = e[2][7] = e[2][3] = 1;
e[3][2] = e[3][4] = e[3][7] = 1;
e[4][3] = e[4][5] = 1;
e[5][4] = e[5][6] = e[5][7] = 1;
e[6][1] = e[6][5] = e[6][7] = 1;
e[7][2] = e[7][3] = e[7][5] = e[7][6] = 1;
}
int find(int u){if(fa[u] == u)return u; fa[u] = find(fa[u]); return fa[u];}//并查集
void dfs(int d){
if(d > 7){
/* 并查集判是否在同一集合 */
for(int i = 1;i <= 7;i++)fa[i] = i;//初始化父亲集合
for(int i = 1;i <= 7;i++)//遍历所有边集
for(int j = 1;j <= 7;j++)
if(e[i][j] && use[i] && use[j]){//i和j相邻并且都亮着
int fx = find(i),fy = find(j);
if(fx != fy)fa[fx] = fy;//如果不在同一集合,合并
}
int k = 0;
for(int i = 1;i <= 7;i++)
if(use[i] && fa[i] == i)k++;
if(k == 1)ans++;//如果所有亮灯都属于同一个集合
return;
}
use[d] = 1;//打开d这个灯,继续开关下一个灯
dfs(d + 1);
use[d] = 0;//关闭d这个灯,继续开关下一个灯
dfs(d + 1);
}
int main(){
init();
dfs(1);
cout << ans;
}