题目链接
https://vjudge.net/problem/UVA-10048
题目大意
输入一个C个点S条边(C≤100,S≤1000)的无向带权图,边权表示该路径上的噪声值。当噪声值太大时,耳膜可能会受到伤害,所以当你从某点去往另一个点时,总是希望路上经过的最大噪声值最小。输入一些询问,每次询问两个点,输出这两点间最大噪声值最小的路径(输出其最大噪声值即可)。
解题思路
对于任意一条至少包含两条边的路径i->j,考虑一个中间点k使得i->j的总长度等于i->k和k->j之和,此时已知路径i->k以及路径k->j各自的最大边权,那么显然i->j的最大边权是取他们的最大值。考虑不同的中间点k,结果可能不同,所以最后还需取一个最小值才是i->j的最佳路径(路径上的最大边权最小)。
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
const int maxn = 1e3 + 10;
const int INF = 0x3fffffff;
const int mod = 1e9 + 7;
int G[maxn][maxn];
int n, m, q;
void init() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
G[i][j] = INF;
}
void floyd() {
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
/*
对于任意一条至少包含两条边的路径i->j,考虑一个中间点k使得i->j的总长度等于i->k和k->j之和,
此时已知路径i->k以及路径k->j各自的最大边权,那么显然i->j的最大边权是取他们的最大值。
考虑不同的中间点k,结果可能不同,所以最后还需取一个最小值才是i->j的最佳路径(路径上的最大边权最小)
*/
G[i][j] = min(G[i][j], max(G[i][k], G[k][j]));
}
}
void solve() {
int kase = 0;
while (cin >> n >> m >> q, n) {
init();
while (m--) {
int u, v, w;
cin >> u >> v >> w;
G[u][v] = G[v][u] = w;
}
floyd();
if (kase)
cout << "\n";
cout << "Case #" << ++kase << "\n";
while (q--) {
int u, v;
cin >> u >> v;
if (G[u][v] != INF)
cout << G[u][v] << "\n";
else
cout << "no path\n";
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout << fixed;
cout.precision(18);
int Case = 1;
// cin >> Case;
while (Case--)
solve();
return 0;
}