题目
题目链接
题目描述
代码一实现
#include <vector>
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param root TreeNode类
* @param p int整型
* @param q int整型
* @return int整型
*/
vector<int> getPath(TreeNode* root, int x){
vector<int> ret;
while(root->val != x){
ret.push_back(root->val);
if(root->val > x)
root = root->left;
else
root = root->right;
}
ret.push_back(root->val);
return ret;
}
int lowestCommonAncestor(TreeNode* root, int p, int q) {
// write code here
vector<int> path_p = getPath(root, p);
vector<int> path_q = getPath(root, q);
int i = 0;
int ret = 0;
while(i < path_p.size() && i < path_q.size()){
if(path_p[i] == path_q[i])
ret = path_p[i];
i++;
}
return ret;
}
};
思路分析
1、首先找到p和q的路径(这里因为是二叉搜索树,故拿到各自的路径,并不需要遍历二叉树,时间复杂度是nlogn),分别存在数组中。
2、遍历这两个数组,拿到最近的相同的数字,就是二叉搜索树的最近的公共祖先。
代码二实现
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param root TreeNode类
* @param p int整型
* @param q int整型
* @return int整型
*/
int lowestCommonAncestor(TreeNode* root, int p, int q) {
// write code here
if(root == nullptr) return -1;
if(root->val == p || root->val == q) return root->val;
int left = lowestCommonAncestor(root->left, p, q);
int right = lowestCommonAncestor(root->right, p, q);
if(left == -1) return right;
if(right == -1) return left;
return root->val;
}
};
思路分析
这里的思路其实是和二叉树的最近公共祖先思路相同。可以参考我的这篇博文,二叉树的最近公共祖先-CSDN博客
这里的二叉搜索树只不过是二叉树中特殊的一种。
注意,这道题目的节点数值的范围是[0,10000],故当遇到空节点的时候,就返回-1,后边的左右子树没有找到的时候,其返回的也就是-1了。