电路上的一些知识

文章目录

1电路模型和电路定律

1.8 基尔霍夫定律

基尔霍夫电压定律KVL:沿任一回路,所有支路电压的代数和为零。
基尔霍夫电流定律KCL:对一个结点,所有流出结点的支路电流代数和为零。

  • Note:流入=流出

2 电阻电路的等效变换

3 电阻电路的分析法

4 电路定理

6 储能元件

电容是把能量存储在电场里,电感是把能量存储在磁场里。

τ的含义:时间常数
对于电容:
在这里插入图片描述
对于电感 :
在这里插入图片描述

6.1 电容元件

6.1.1 概念

无源元件。(需要电源才能工作的器件)

  • 电容的基本公式
    在这里插入图片描述

  • 特性:通交阻直;由于交流变化可以在电容板两侧产生感应电荷,所以通交流;由于电容板之间没有导电介质,所以阻直流。

  • 电压公式
    在这里插入图片描述在这里插入图片描述
    其中Q是电量,U是板间电压。

因此当电压是直流的时候,也就是没有这个du的变化,这个时候是没有电流的。

变上限积分
在这里插入图片描述
t时刻的电压为u(t),我们关注的是 t 0 t_0 t0时刻。
说明
在这里插入图片描述

在这里插入图片描述

6.1.2 容抗

在这里插入图片描述
通高阻低

等效电阻
在这里插入图片描述

6.1.3 电容种类

在这里插入图片描述
他们的内部介质不同
在这里插入图片描述

6.1.3.1 安规电容

安规电容是通过了安全规范测试认证,符合国家安全标准。电容失效之后不会起火
在这里插入图片描述

  • 位置
    在这里插入图片描述
    作用就是滤除高频干扰
    在这里插入图片描述
    x电容率滤除差模干扰,Y电容滤波共模干扰
    在这里插入图片描述
  • X电容
    在这里插入图片描述
    高频干扰从火线进来,零线出去。由于差模,所以有电位差,可以给X电容充电。
  • Y电容
    在这里插入图片描述
    两根线同时受到干扰,幅值同向波动。
    二者都十分耐压
    在这里插入图片描述
6.1.3.2 电解电容

在这里插入图片描述
电解电容只允许加正电压,不允许加反电压,会爆炸。

6.1.3.3 电容命名

在这里插入图片描述

6.1.4 电容作用

6.1.4.1 降压

在这里插入图片描述
断电之后,电容上的电压很高,所以加一个电阻泄压
在这里插入图片描述

6.1.4.2 滤波

通高频阻低频;
在这里插入图片描述
当频率低的时候,容抗贼拉大。
在这里插入图片描述
串联分压,就会承担绝大多数的电压。
在这里插入图片描述
当频率高时,容抗为0。因此没有阻碍作用。
在这里插入图片描述
图解如上,当截止频率时,输出电压的幅度可达70%。

6.1.4.3 延时

在这里插入图片描述
在这里插入图片描述

6.1.4.4 解耦合

当电流激增时,电路中的电感、电阻产生反弹效果,产生电流噪音,这种现象叫做耦合。电容可避免元器件之间相互耦合干扰。
滤直通交。滤除低频。
在这里插入图片描述

6.1.4.5 旁路

滤除高频交流信号。
在这里插入图片描述
比如给芯片供电时,习惯性紧靠着芯片,加一个0.1uF旁路电容,从而滤除高频。
在这里插入图片描述

6.1.5 电容的充放电

在这里插入图片描述
电容在充电的时候也就是电压大于零,还在续往上增。
放电的时候也就是电压大于0,但是电压在往下降。

其中的u是这个极板的电位差。

6.1.6 电容储能量化

在这里插入图片描述
对功率P进行变上限积分。
我们通常认为在时间的起点也就是 u ( − ∞ ) u(-\infty) u()等于0,也就是电压还没有来得及突变。

6.2 电感元件

电感在电路中的坐拥只有两个字,续流。

6.2.1 概念

L是电感元件的参数称作自感系数或电感,是一个正常的实数。线圈产生的磁链与电流之比。
L = ψ i L=\frac{ψ}{i} L=iψ

  • 电感的基本公式
    在这里插入图片描述

Feature:通直阻交;
Feature principal:中间接通,所以通直;
根据感生电动势: u = d Ψ L d t u= \frac{d\Psi_{L}}{dt} u=dtdΨL
u = L d i d t u = L\frac{di}{dt} u=Ldtdi

特性:
在这里插入图片描述i是不能突变的,i突变电压就是无穷。

6.2.1x 电感电流

在这里插入图片描述
说明:
在这里插入图片描述
在这里插入图片描述

6.2.2 储能

电流通过电感(器件)时储存的电能:
E = 1 2 L i 2 E=\frac{1}2 Li^2 E=21Li2

储能
在这里插入图片描述
在这里插入图片描述

6.2.3 伏秒原则

处于稳定状态的电感

  • 开关导通时间(电流上升段)的伏秒数须与开关关断(电流下降段)时的伏秒数在数值上相等,尽管两者符号相反。
  • 绘出电感电压对时间的曲线,导通时段曲线的面积必须等于关断时段曲线的面积 。
  • 加在电感两端的电压乘以导通时间等于关断时刻电感两端电压乘以关断时间
  • 在一个周期 T 内, 电感电压对时间的积分为 0,称为伏秒平衡原理。

任何稳定拓扑中的电感都是传递能量而不消耗能量, 都会满足伏秒平衡原理

6.2.4 电感元件

线性时不变电感元件
在这里插入图片描述

6.2.5 电感充放电

在这里插入图片描述
在这里插入图片描述

6.3 换路定则

  • 换路前后电容电流和电感电压为有限值的条件下,换路前后的瞬间电容电压和瞬间电感电流不能跃变。

6.4 储能总结

在这里插入图片描述

6.5 串并联

6.5.1 电容串联

在这里插入图片描述
电容的串联等效于电阻的并联。
在这里插入图片描述
串联电压
在这里插入图片描述

6.5.2 电容并联

电容的并联等效于电阻的串联。
在这里插入图片描述

在这里插入图片描述

6.5.4 电感串联

电感与电阻是同构的。
在这里插入图片描述
分压
在这里插入图片描述

6.5.5电感并联

并联分流
在这里插入图片描述
在这里插入图片描述

6.5.3 电容与电导

电容与电阻是对偶的,然后电阻与电导是对偶的,所以电容与电导式同一阵营,所以电容的串联与并联关系与电导的串联与并联关系是一致的。

6.6 电容与电感的滤波

滤波就是将单相脉冲的直流电中所含的大部分交流成分滤掉,得到较为平滑的直流电。

在这里插入图片描述

9 正弦稳态电路的分析

9.1 阻抗和导纳

9.4 正弦稳态电路的功率

单位:1瓦特(1W)=1焦/秒(1J/s)=1伏·安(V·A)
单位时间内所做的功。
在这里插入图片描述

9.4.1 交流容量、视在功率

即视在功率,单位VA,V*I

  • 交流电源所能提供的总功率,称之为视在功率或表现功率,在数值上是交流电路中电压与电流的乘积。视在功率用S表示。单位为伏安(VA)或千伏安(KVA)。
  • S=UI

9.4.2 直流容量、有功功率

  • 有功功率,简称“有功”, 用“P”表示,单位是瓦(W)或千瓦(KW)。
  • 一般负载说的额定功率就是W。
    与电压同相位的电流的分量乘电压的值。
  • 它的大小等于瞬时功率最大值的1/2,就是等于电阻元件两端电压有效值与通过电阻元件中电流有效值的乘积
    • W=VA功率因数。
    • 反映了交流电源在电阻元件上做功的能力大小
  • P=UIcosφ

9.4.3 无功功率

无功功率。简称“无功”,用“Q”表示。单位是乏(Var)或千乏(KVar)

  • 表达了交流电源能量与磁场或电场能量交换的最大速率。
  • 有线圈和铁芯的感性负载,它们在工作时建立磁场所消耗的功率即为无功功率。如果没有无功功率,电动机和变压器就不能建立工作磁场。
  • Q=UIsinφ

9.4.4功率三角形

视在功率(S)、有功功率(P)及无功功率(Q)之间的关系,可以用功率三角形来表示。
功率因数:

  • 电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示
  • 在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S
    在这里插入图片描述
功率因数

功率因数过高即无功过低,虽然减少了系统的无功率量,但会影响电路的稳定性。

功率因数过低意味着电路用于交变磁场转换的无功功率大,这会降低设备的利用率并增加线路供电损失。

在实际应用中,功率因数应该维持在一个合理的范围内,既不过高也不过低。

9.4.5 有功与电流的关系

当交流电的电压为有效值

我们平时所说的220V指的是相电压。

额定相电流有效值 = 额定功率 额定线电压 / 3 额定相电流有效值 = \frac{额定功率}{额定线电压/\sqrt{3} } 额定相电流有效值=额定线电压/3 额定功率
电流的标幺值 = 实际相电流的有效值 额定相电流的有效值 电流的标幺值=\frac{实际相电流的有效值}{额定相电流的有效值} 电流的标幺值=额定相电流的有效值实际相电流的有效值

10 含有耦合电感的电路

10.4 变压器原理

变压器第一公式
U 1 U 2 = N 1 N 2 \frac{U_1}{U_2} = \frac{N_1}{N_2} U2U1=N2N1

12 三相电路

目前世界各国的电力系统中的电能的生产传输和供电方式绝大多数采用三相制。三相电路已经形成规范化和标准化,它主要由三相电源三相负载和三相输电线路三部分组成。

12.1 三相电路

对称三相电源是由三个同频率等幅值,初相依次滞后120度的正弦电压源连接成星形或者是三角形组成的电源。
在这里插入图片描述以上述三相电压的相序abc为正序。与此相反,如果b相超前a相120度,c相超前b相120度,这种相序称为逆序。相位差为零的相序为零序,电力系统已采用正序。

对称三相电压满足以下公式在这里插入图片描述我国的三相系统电源频率为50赫兹入户电压为220伏,而欧美日等国的为60赫兹110伏。

星形和三角形的连接方式如下图所示。
在这里插入图片描述 12-1
对称三相电压源的电压波形和向量图如下图所示。
在这里插入图片描述三个阻抗连接成三角形或者是星形方式就构成了三角形或星形负载。当这三个阻抗相等时,就称为对称三相负载。

在这里插入图片描述
要注意的是,电源为星型,负载可以为三角形。反之亦然。

在星型与星形的连接中,如果把三相电源中的中性点n和负载的中性点n撇,用一条具有阻抗为zn的中性线连接起来。则这种连接方式称为三相四线制方式,上述其余的连接方式都属于三相三线。

在实际的电路中,三相电源是对称的,三条端线阻抗是相等的,但负载则不一定是对称的。

三相变换

在这里插入图片描述

由于三条轴的位置固定不变因此形成了三相静止坐标系(3s)。
在这里插入图片描述
三相静止坐标系的a、b和c方向对应单位矢量分别为 e j 0 、 e j 2 π / 3 和 e − j 2 π / 3 e^{j0} 、ej^{2π/3}和e^{-j2π/3} ej0ej2π/3ej2π/3,这样三相电压表示为矢量形式为:

在这里插入图片描述

三相电压的矢量表示方式是有问题的,下面的合成也是。

三相合成矢量可以表示为
在这里插入图片描述
上式可以看出,标准三相合成矢量是一个旋转的矢量,它的幅值为3/2Vm,是单相电压幅值的3/2,相角为α=ωt。
在这里插入图片描述

连接方式

星形连接(Y接法):三根相线(通常标记为R、S、T或U、V、W)连接在一起形成中性点(N),各相线与中性点之间形成三相四线制系统。

这种连接方式适用于负载均衡、需要中性线的场合,如家庭和商业用电。
在这里插入图片描述
三角形连接(Δ接法):三根相线首尾相连形成闭合回路,无中性线。这种连接方式适用于不需要中性线、负载不平衡或需要更高电压的场合,如工业设备。
在这里插入图片描述

负载分配:

•平衡负载:三相电的优势在于可以均匀分配负载,使各相电流接近相等,提高供电效率,减少线路损耗。应尽量将负载均匀分配到三根相线上,避免单相过载。

•不平衡负载:在实际应用中,若负载难以完全平衡,应通过调整负载分布或使用三相不平衡保护设备来限制各相电流偏差,防止过载和电压波动。

接地保护:

•保护接地:在三相系统中,通常需要将中性点(星形连接时)或设备外壳(根据接地系统类型)接地,提供故障电流返回路径,防止触电和设备损坏。

•工作接地:某些设备可能需要工作接地,如电机、变频器等,以提供稳定的参考电位,提高设备性能和安全性。

三相电功率

功率是指单位时间内所做的功,即电流在一定时间内的能量转换速度。
在这里插入图片描述
三相电功率的计算公式是“功率=1.732×电压×电流×功率因数”。1.732是根号3的值,电压和电流分别是三相电的线电压和线电流,功率因数是电路中有功功率与视在功率之比。

三相电的总功率计算公式如下:

P = U × I × cosφ , U —— 线电压; I —— 线电流; cosφ —— 功率因数,表示负载阻抗性质,数值介于0和1之间。

例如,某工厂使用一台380 V、50 Hz的三相异步电动机,测得其工作电流为40 A,功率因数为0.9。则该电动机消耗的功率为:
P = 380 V × 40 A × 0.9 ≈ 13,680 W (约等于)。

abc三相静止坐标系下系统侧有功功率Ps和无功功率Qs的求解公式是唯一的。根据瞬时功率理论,交流系统有功功率Ps和无功功率Qs分别为:

abc三相静止坐标系下系统侧有功功率Ps和无功功率Qs的求解公式是唯一的。根据瞬时功率理论,交流系统有功功率Ps和无功功率Qs分别为:
在这里插入图片描述dq同步旋转坐标系下,有功功率Ps和无功功率Qs表现出了以下2种形式:
在这里插入图片描述Park变换矩阵如下:

在这里插入图片描述

选用的Clark变换及其反变换矩阵如下:在这里插入图片描述

在这里插入图片描述

12.2 线电压电流与相电压电流的关系

三相系统中流经输电线中的电流称为线电流。如12-2中a、b的Ia点Ib点和ic点。 In点则称为中性线的电流。

线电压和相电压的基本信息可以查看

线电压是指的火线与火线之间的电压,也就是相间的电压,如12-2中a、b的 U A B 、 U B C 、 U C A U_{AB}、U_{BC}、U_{CA} UABUBCUCA

相电压指的是火线与零线之间的电压。三相电源和三相负载中的每一相的电压电流称为相电压和相电流。

三相系统中的线电压和相电压、线电流和相电流直接到关系都与链接方式有关。

对于对称星形电源,相电压和线电压的关系,结合12-1a图所示,根据kvl有。
在这里插入图片描述其中Uab为线电压。 Ua为相电压。

对称的星形三相电源端的线电压和相电压之间的关系可以用一种特殊的电压相量图表示。
在这里插入图片描述上图为公式12-1的向量图拼接而成。
从图中可以看出线电压与对称相电压之间的关系可以用电压定三角形说明,对于星形电源,相电压对称时线电压也一定依序对称,它是相电压的根号三倍,依次超前相电压相位30度。

对于三角形电源12-1b来说,相电压和线电压是相等的。

对于**星形连接来说,线电流是等于相电流的,对于三角形,线电流是是相电流的根号3倍。**三角形电流的关系如图12-3的b所式。公式如下图所示。
在这里插入图片描述

正序分量

对于正序来说,任意交换两相都是逆序。
把三相不平衡的电流、电压分解成三组对称的正序分量、负序分量、零序分量;

对于理想的电力系统,由于三相对称,因此负序和零序的分量数值都为0。这就是我们常说的正常状态下只有正序分量的原因。

当系统出现故障时,就能分解出有幅值的负序和零序分量了,但有时只是其中的一种。

零序
在这里插入图片描述正序

在这里插入图片描述在这里插入图片描述负序

在这里插入图片描述

12.3对称三相电路的计算

对称三相电路是一类特殊类型的正弦交流电路。

只要分析计算三相中的任意一项其他两相的电流就可以按对称顺序写出。这就是对称的形星形三相电路归结为一项的计算方法。

12.4不对称三相电路的概念

在三相电路中,只要有一部分不对称就称为不对称三相电路。

  • 比如对称三相电路的某一条端线断开或者是某一项负载发生短路或开路,就失去了对称性。

12.5 三相电路的功率

对称三相电路的瞬时功率是一个常值,其值等于平均功率,这是对称三相电路的一个优越性能,习惯上把这一性能称为瞬时功率平衡。

16 二端口网络

16.1 二端口网络

一端口:如果一个复杂电路只有两个端子向外连接,切仅对外接电路中的情况感兴趣,则该电路可视为一个一端口。
二端口:输入输出各有两个端口。对于所有时间t,如果从端子1流入方框的电流等于从端口1’流出的电流;同时,从端子2流入方框的电流等于从端口2‘流出的电流,则该电路称为二端口网络。
在这里插入图片描述

19 嵌入式硬件

CPU

初代CPU是海量继电器的组合,也就是开关,现在则是三极管代替。
在这里插入图片描述

电力电子的一些知识

桥电路

CHB

cascaded H bridge 三相级联H桥

DAB

双有源变换器

电路器件

LM7815与LM7915

名称:78开头都表示正的,79开头都表示负的

开关电器

接触器、继电器和断路器都是一种开关。断路器和继电器是用在电气一次回路的,可以通断大电流,而继电器则是用在电气二次回路的,触点很小,只能通断小电流。

继电器

主要应用了右手螺旋定则,就是一个小电流控大的电磁开关。
用于够成保护回路。保护回路是由电流电压互感器采集信号,通过继电器判断是否需要动作。
在这里插入图片描述
在这里插入图片描述
时间继电器,中间继电器等。它们是可以构成延时效果,或者增加触头数目,或者增加触头容量等效果。(关键:用于二次回路)
电气符号:
在这里插入图片描述

接触器

接触器是指工业电中利用线圈流过电流产生磁场,使触头闭合,以达到控制负载的电器。跟继电器原理相同,主要用在主回路中。

  • 区别是继电器通断的电流一般较小,用在控制回路中;继电器触头容量一般不超过5安培;继电器触头一般不分主辅,不配备灭弧罩。
  • 接触器用来接通和断开主电路,通断电流大;接触器触头容量一般不低于10安培;接触器触头有三对主触头和几对辅助触头,且配备灭弧罩。

在这里插入图片描述

内部结构

  • 三个主触头下连接热敏金属片,电动机过载,双金属片受热变形,左边的辅助触头触发。
  • 触发之后,常闭变常开,常闭点接接触器的线圈,断开后电路断开。常开变常闭,常开接警报。
    在这里插入图片描述

在这里插入图片描述
电气符号
在这里插入图片描述

断路器

  • 断路器的功能主要有保护负载和短路的电流,用于过载和短路的保护用的开关。断路器能够承受比较大的负荷和非常大的短路电流,而且有自动断路的功能。

指能够关合、承载和开断正常回路条件下的电流并能关合、在规定的时间内承载和开断异常回路条件下的电流的开关装置。

  • 断路器起到了保护电气过电流、过电压等作用
    在这里插入图片描述
    电气符号
    在这里插入图片描述
断路器和隔离开关的区别?

断路器通常采用遥控电动操作,而隔离开关则多采用就地手动操作。

使用场景:断路器因其强大的灭弧功能和保护功能,可在带负载下关断,适用于高压电路。而隔离开关则主要用于小负载的情况下关断。

功率转矩

功率的转矩表达:
在这里插入图片描述

电路与复变

交流电压的三角函数表示

交流电压随时间按正弦规律变化时,其瞬时值可以表示为 V = V 0 sin ⁡ ( ω t + φ ) V = V_0\sin(\omega t+\varphi) V=V0sin(ωt+φ)。其中 V 0 V_0 V0 是电压的峰值, ω \omega ω 是角频率,它与频率 f f f 的关系是 ω = 2 π f \omega = 2\pi f ω=2πf t t t 是时间, φ \varphi φ 是初相位。这种表示方法直观地体现了电压随时间的周期性变化情况。

交流电压的复数表示

交流电压也可以用复数形式 V ~ = V 0 e i ( ω t + φ ) \widetilde{V}=V_0e^{i(\omega t + \varphi)} V =V0ei(ωt+φ) 来表示,这里用到了欧拉公式 e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta + i\sin\theta eiθ=cosθ+isinθ,将其代入可得 V ~ = V 0 [ cos ⁡ ( ω t + φ ) + i sin ⁡ ( ω t + φ ) ] \widetilde{V}=V_0[\cos(\omega t + \varphi)+i\sin(\omega t + \varphi)] V =V0[cos(ωt+φ)+isin(ωt+φ)]

两者的关系

实际上, V = V 0 sin ⁡ ( ω t + φ ) V = V_0\sin(\omega t+\varphi) V=V0sin(ωt+φ) V ~ = V 0 e i ( ω t + φ ) \widetilde{V}=V_0e^{i(\omega t + \varphi)} V =V0ei(ωt+φ) 的虚部。在交流电路分析中,我们通常只关注复数的实部或虚部来对应实际的物理量。由于在电路分析里,正弦和余弦函数只是相位相差 π 2 \frac{\pi}{2} 2π,本质上都能描述周期性变化,所以可以根据需要选择关注实部或者虚部。

引入复数表示的意义

使用复数形式 V ~ = V 0 e i ( ω t + φ ) \widetilde{V}=V_0e^{i(\omega t + \varphi)} V =V0ei(ωt+φ) 来表示交流电压主要是为了简化计算。在交流电路中,涉及到电压、电流、阻抗等物理量的运算,如果使用三角函数进行计算会非常繁琐。而采用复数运算,利用复数的代数运算法则(如加减乘除),可以大大简化计算过程。例如,在计算多个同频率交流电压的叠加时,用复数表示后只需进行简单的复数加法运算即可。

综上所述, V = V 0 sin ⁡ ( ω t + φ ) V = V_0\sin(\omega t+\varphi) V=V0sin(ωt+φ) V ~ = V 0 e i ( ω t + φ ) \widetilde{V}=V_0e^{i(\omega t + \varphi)} V =V0ei(ωt+φ) 不是恒等关系,但通过取复数的虚部可以建立起它们之间的联系。

虽然交流电压复变表示形式取虚部才对应实际的物理量,但它在交流电路分析中有着非常重要的应用,能极大简化计算和分析过程,以下从几个方面说明它的使用方法和为何能用于表示实际物理量:

为何能表示实际物理量

交流电压的实际值确实是一个实数,而复变表示是复数形式。不过,在交流电路中,所有激励(电源)和响应(电压、电流)都是同频率的正弦量,频率是已知的,在分析过程中重点关注的是电压、电流的幅值(或有效值)和相位。复变表示将幅值和相位信息整合在一个复数中,通过取虚部(或实部,取决于设定规则)就可以还原出实际的正弦时间函数,所以它能用来表示实际物理量。

具体使用方式

1. 电路元件的复阻抗表示
  • 电阻元件:对于电阻 R R R,其两端电压 V ~ R \widetilde{V}_R V R 和通过的电流 I ~ R \widetilde{I}_R I R 满足欧姆定律的复数形式 V ~ R = R I ~ R \widetilde{V}_R = R\widetilde{I}_R V R=RI R。例如,已知电流 I ~ R = I 0 e i ( ω t ) \widetilde{I}_R = I_0e^{i(\omega t)} I R=I0ei(ωt),则电压 V ~ R = R I 0 e i ( ω t ) \widetilde{V}_R=RI_0e^{i(\omega t)} V R=RI0ei(ωt),取虚部就得到实际的电压随时间变化关系 v R ( t ) = R I 0 sin ⁡ ( ω t ) v_R(t)=RI_0\sin(\omega t) vR(t)=RI0sin(ωt)
  • 电感元件:电感 L L L 的感抗 X L = ω L X_L=\omega L XL=ωL,其电压和电流关系为 V ~ L = i X L I ~ L \widetilde{V}_L = iX_L\widetilde{I}_L V L=iXLI L。假设电流 I ~ L = I 0 e i ( ω t ) \widetilde{I}_L = I_0e^{i(\omega t)} I L=I0ei(ωt),那么 V ~ L = i ω L I 0 e i ( ω t ) = ω L I 0 e i ( ω t + π 2 ) \widetilde{V}_L = i\omega LI_0e^{i(\omega t)}=\omega LI_0e^{i(\omega t+\frac{\pi}{2})} V L=LI0ei(ωt)=ωLI0ei(ωt+2π),取虚部可知电压 v L ( t ) = ω L I 0 sin ⁡ ( ω t + π 2 ) v_L(t)=\omega LI_0\sin(\omega t + \frac{\pi}{2}) vL(t)=ωLI0sin(ωt+2π),这表明电感电压相位超前电流 π 2 \frac{\pi}{2} 2π
  • 电容元件:电容 C C C 的容抗 X C = 1 ω C X_C=\frac{1}{\omega C} XC=ωC1,电压和电流关系为 V ~ C = 1 i X C I ~ C = − i X C I ~ C \widetilde{V}_C=\frac{1}{iX_C}\widetilde{I}_C=-iX_C\widetilde{I}_C V C=iXC1I C=iXCI C。若电流 I ~ C = I 0 e i ( ω t ) \widetilde{I}_C = I_0e^{i(\omega t)} I C=I0ei(ωt),则 V ~ C = − i 1 ω C I 0 e i ( ω t ) = I 0 ω C e i ( ω t − π 2 ) \widetilde{V}_C=-i\frac{1}{\omega C}I_0e^{i(\omega t)}=\frac{I_0}{\omega C}e^{i(\omega t - \frac{\pi}{2})} V C=iωC1I0ei(ωt)=ωCI0ei(ωt2π),取虚部得到电压 v C ( t ) = I 0 ω C sin ⁡ ( ω t − π 2 ) v_C(t)=\frac{I_0}{\omega C}\sin(\omega t-\frac{\pi}{2}) vC(t)=ωCI0sin(ωt2π),说明电容电压相位滞后电流 π 2 \frac{\pi}{2} 2π
2. 电路定律的复数形式应用
  • 基尔霍夫定律
    • 基尔霍夫电流定律(KCL):在复数域中,对于任意节点,流入节点的电流相量之和等于流出节点的电流相量之和,即 ∑ I ~ = 0 \sum\widetilde{I}=0 I =0。例如,在一个有三条支路的节点处,已知两条支路电流分别为 I ~ 1 = I 10 e i ( ω t + φ 1 ) \widetilde{I}_1 = I_{10}e^{i(\omega t+\varphi_1)} I 1=I10ei(ωt+φ1) I ~ 2 = I 20 e i ( ω t + φ 2 ) \widetilde{I}_2 = I_{20}e^{i(\omega t+\varphi_2)} I 2=I20ei(ωt+φ2),根据 KCL 可求出第三条支路电流 I ~ 3 = − ( I ~ 1 + I ~ 2 ) \widetilde{I}_3=-(\widetilde{I}_1+\widetilde{I}_2) I 3=(I 1+I 2)
    • 基尔霍夫电压定律(KVL):对于任意闭合回路,沿回路的电压相量之和为零,即 ∑ V ~ = 0 \sum\widetilde{V}=0 V =0。在一个包含电阻、电感和电容的串联回路中,电源电压 V ~ s \widetilde{V}_s V s 等于各元件电压相量之和,即 V ~ s = V ~ R + V ~ L + V ~ C \widetilde{V}_s=\widetilde{V}_R+\widetilde{V}_L+\widetilde{V}_C V s=V R+V L+V C,通过复数运算可求解电路中的未知量。
3. 功率计算
  • 交流电路中的功率分为有功功率 P P P、无功功率 Q Q Q 和视在功率 S S S。通过复变表示可以方便地计算这些功率。设电压相量 V ~ = V 0 e i φ V \widetilde{V}=V_0e^{i\varphi_V} V =V0eiφV,电流相量 I ~ = I 0 e i φ I \widetilde{I}=I_0e^{i\varphi_I} I =I0eiφI,则复功率 S ~ = V ~ I ~ ∗ = V 0 I 0 e i ( φ V − φ I ) = P + i Q \widetilde{S}=\widetilde{V}\widetilde{I}^* = V_0I_0e^{i(\varphi_V-\varphi_I)}=P + iQ S =V I =V0I0ei(φVφI)=P+iQ,其中 I ~ ∗ \widetilde{I}^* I 是电流相量的共轭复数。有功功率 P = V 0 I 0 cos ⁡ ( φ V − φ I ) P = V_0I_0\cos(\varphi_V - \varphi_I) P=V0I0cos(φVφI),无功功率 Q = V 0 I 0 sin ⁡ ( φ V − φ I ) Q = V_0I_0\sin(\varphi_V - \varphi_I) Q=V0I0sin(φVφI),视在功率 S = V 0 I 0 S = V_0I_0 S=V0I0。通过复功率的计算,可以更全面地分析电路的功率特性。

THD

总谐波失真,total harmonic distribution

故障保护

硬件

硬件过压

硬件过压的阈值要高于软件过压,当软件没起到保护作用的时候由硬件触发。

软件

反接保护

对于AC,反接说的是相序反接。
对于DC,反接说的是正负反接,此时电压表现为负的。而当判断时可以按照小于正常电压的-10%作为阈值。

EMC

电磁兼容性(EMC,即Electromagnetic Compatibility)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。

谐波

谐波失真率

谐波失真率通常定义为所有谐波的方均根值的方和根与基波方均根值的比例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万码无虫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值