A Survey of Knowledge Tracing 总结

本文概述了知识追踪(KT)的任务定义和模型分类,重点介绍了概率模型(如BKT和DBKT)、逻辑模型(如LFA和KTM)以及基于深度学习的模型(如DKT、DKVMN和AKT)。KT旨在预测学生在学习过程中的知识状态演变,深度学习模型在处理复杂学习过程时表现出优越性能,但可解释性较弱。文章还探讨了KT模型的个性化建模、学习过程中的参与信息融合以及遗忘效应的考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,KT任务定义和KT模型的分类 

      KT任务定义: 给定在线学习系统中的学习交互序列,知识跟踪旨在监测学生在学习过程中的知识状态演变,并预测他们在未来练习中的表现(既要考虑学生成绩预测,也要考虑学生的知识状态)

     KT模型:

           1.概率模型

           2.逻辑模型

           3.基于深度学习的模型

变体:1.学习前的个性化建模     2.在学习过程中结合参与和利用辅助信息    3.考虑学习后的遗忘

二,概率模型

       1.原始贝叶斯知识追踪(BKT)

           BKT是隐马尔可夫模型(含有转移概率和发射概率)

           在BKT中,过渡概率有两个学习参数定义:P(T):从未学习状态过渡到学习状态的过程

                                                                               P(F):遗忘先前掌握知识的概率

                             发射概率的两个性能参数决定:P(G):即学生在不精通的情况下猜对的概率

                                                                               P(S):学生在掌握知识后犯的错误概率   

        P(Ln)是在第n次学习交互中掌握KC的概率,P(Cn+1)是下一次学习交互中正确答案的概率。          P(Ln)是两个概率的和:(1)KC已经被掌握的概率;(2)知识状态转化为掌握状态的概率

 2.动态贝叶斯知识追踪(DBKT)(KC之间并不是完全独立的,而是层次性的、密切相关的)

三,逻辑模型

    使用学生学习互动中的不同因素来计算学生和KC参数的估计,然后利用逻辑函数将该估计转换为掌握概率的预测

  1.学习因素分析

   初始知识状态:参数α估计每个学生的初始知识状态;

   KCs的容易程度:参数β捕获不同KCs的容易程度;

   KCs的学习率:参数γ表示KCs的学习率。

             其中σ是sigmoid函数,Si是学生i的协变量,Tj表示KC j上相互作用次数的协变量,Kj是KC j的协变量,p(θ)是正确答案的概率估计。 

2.性能因素分析

       先前失败:参数f是学生KC的先前失败;

       以前的成功:参数s表示学生的KC以前的成功;

       KCs的容易程度:参数β表示不同KCs的容易程度,与LFA模型相同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值