Sentosa_DSML社区版
文章平均质量分 95
为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。
Kenneth風车
专注AI领域知识分享,Sentosa_DSML官网:https://sentosa.znv.com/
展开
-
【机器学习(二十六)】零代码开发之时间序列案例销量预测-Sentosa_DSML社区版
零代码开发之时间序列案例销量预测-Sentosa_DSML社区版原创 2024-11-01 09:17:43 · 814 阅读 · 0 评论 -
【机器学习(二十五)】零代码开发之多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版
零代码开发之多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版原创 2024-11-01 09:14:05 · 847 阅读 · 0 评论 -
【机器学习(二十四)】零代码开发之因子分解机(Factorization Machines,FM)算法-Sentosa_DSML社区版
零代码开发之因子分解机(Factorization Machines,FM)算法-Sentosa_DSML社区版原创 2024-10-31 09:15:46 · 1224 阅读 · 0 评论 -
【机器学习(二十三)】零代码开发之K近邻(K-NearestNeighbor,KNN)算法-Sentosa_DSML社区版
零代码开发之K近邻(K-NearestNeighbor,KNN)算法-Sentosa_DSML社区版原创 2024-10-31 09:12:51 · 734 阅读 · 0 评论 -
【机器学习(二十二)】零代码开发之LightGBM算法-Sentosa_DSML社区版
零代码开发之LightGBM算法-Sentosa_DSML社区版原创 2024-10-30 12:04:01 · 982 阅读 · 0 评论 -
【机器学习(二十一)】零代码开发之AdaBoost算法-Sentosa_DSML社区版
零代码开发之AdaBoost算法-Sentosa_DSML社区版原创 2024-10-30 11:54:17 · 980 阅读 · 0 评论 -
【机器学习(十九)】零代码开发之随机森林(Random Forest,RF)算法-Sentosa_DSML社区版
零代码开发之随机森林(Random Forest,RF)算法-Sentosa_DSML社区版原创 2024-10-29 11:23:35 · 865 阅读 · 0 评论 -
【机器学习(二十)】零代码开发之梯度提升决策树(Gradient Boosting Decison Tree,GBDT)算法-Sentosa_DSML社区版
零代码开发之梯度提升决策树(Gradient Boosting Decison Tree,GBDT)算法-Sentosa_DSML社区版原创 2024-10-29 11:41:14 · 900 阅读 · 0 评论 -
【机器学习(十八)】零代码开发之决策树(Decision Tree,DT)算法-Sentosa_DSML社区版
零代码开发之决策树(Decision Tree,DT)算法-Sentosa_DSML社区版原创 2024-10-28 16:37:18 · 794 阅读 · 0 评论 -
【机器学习(十七)】零代码开发之XGBoost算法-Sentosa_DSML社区版
零代码开发之XGBoost算法-Sentosa_DSML社区版原创 2024-10-28 16:20:53 · 774 阅读 · 0 评论 -
【第十九章:Sentosa_DSML社区版-机器学习之模型评估】
评估用当前数据训练出来的模型的正确性,显示对模型各个评价指标的具体值,方便用户对生成的模型有一个确切了解原创 2024-09-24 08:24:13 · 1050 阅读 · 0 评论 -
【第十八章:Sentosa_DSML社区版-机器学习之协同过滤】
协同过滤是推荐系统中常用的一种方法。该算法旨在填补用户-产品关联矩阵中缺少的项。在算法中,用户和产品都是通过一组少量的潜在因素描述,这些潜在因素可以用于预测用户-产品关联矩阵中缺少的项。原创 2024-09-23 14:11:49 · 824 阅读 · 0 评论 -
【第十七章:Sentosa_DSML社区版-机器学习之异常检测】
Sentosa_DSML社区版-机器学习之异常检测,机器学习异常检测是检测数据集中的异常数据的算子,一种高效的异常检测算法。它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择。原创 2024-09-23 13:54:01 · 954 阅读 · 0 评论 -
【第十六章:Sentosa_DSML社区版-机器学习之生存分析】
Sentosa_DSML社区版-机器学习之生存分析,加速失效时间回归模型Accelerated failure time (AFT)是一个监督型参数化的回归模型,它可以处理删失数据。它描述了一个生存时间的对数模型,通常被称为生存分析的对数线性模型。原创 2024-09-23 11:34:02 · 684 阅读 · 0 评论 -
【第十五章:Sentosa_DSML社区版-机器学习之关联规则】
Sentosa_DSML社区版-机器学习关联规则,机器学习关联规则是一种用于发现数据集中项之间有趣关系的方法。它基于统计和概率理论,通过分析大量数据来识别项之间的频繁共现模式。原创 2024-09-23 11:16:32 · 1401 阅读 · 0 评论 -
【第十四章:Sentosa_DSML社区版-机器学习之时间序列】
Sentosa_DSML社区版-机器学习时间序列,机器学习时间序列算法合集原创 2024-09-23 10:03:09 · 1222 阅读 · 0 评论 -
【第十三章:Sentosa_DSML社区版-机器学习之聚类】
Sentosa_DSML社区版-机器学习聚类,机器学习聚类算法是一种无监督学习方法,它根据数据的内在特性将数据划分为不同的组或簇,使得同一簇内的数据对象尽可能相似,而不同簇间的数据对象则尽可能不同。原创 2024-09-20 11:58:26 · 1368 阅读 · 0 评论 -
【第十二章:Sentosa_DSML社区版-机器学习之回归】
Sentosa_DSML社区版-机器学习回归,机器学习回归算法是一种有监督学习算法,主要用于建立自变量和因变量之间的关系。回归算法的目标是预测一个连续的目标变量,通常是一个实数值。原创 2024-09-19 19:59:05 · 1292 阅读 · 0 评论 -
【第十一章:Sentosa_DSML社区版-机器学习之分类】
Sentosa_DSML社区版-机器学习分类,机器学习分类通常通过监督学习来完成,即使用带有标签的数据集进行训练,使模型能够预测新的数据样本所属的类别。原创 2024-09-19 14:51:00 · 949 阅读 · 0 评论 -
【第十章:Sentosa_DSML社区版-特征工程】
Sentosa_DSML社区版-特征工程,特征工程类算子是对数据的特征列进行编码转换、降维、特征重要性判断等处理的算子,帮助用户将数据处理为适合后续分析的的类型。特征工程类算子属于算子流中的中间算子。原创 2024-09-14 17:33:07 · 951 阅读 · 0 评论 -
【第九章:Sentosa_DSML社区版-统计分析】
Sentosa_DSML社区版-统计分析,统计分析类算子主要是对数据做定性或定量分析,输出数据的相关指标供用户在数据分析过程中对衡量判断。统计分析类算子属于算子流中的中间算子。原创 2024-09-13 10:49:23 · 1001 阅读 · 0 评论 -
【第八章:Sentosa_DSML社区版-数据融合】
Sentosa_DSML社区版-数据融合,数据融合算子作用是将多个表数据根据设定规则融合到一张表中。原创 2024-09-12 16:43:01 · 764 阅读 · 0 评论 -
【第七章:Sentosa_DSML社区版-列处理】
Sentosa_DSML社区版-列处理,列处理类算子是数据读出后,对表状结构数据,列维度的处理,包括列的增加,修改,删除,查询等。列处理类算子属于算子流中的中间算子。原创 2024-09-12 16:10:49 · 1064 阅读 · 0 评论 -
【第六章:Sentosa_DSML社区版-行处理】
Sentosa_DSML社区版-行处理:行处理类算子是数据读出后,对表状结构数据,行维度的处理,包括行的增加,修改,删除,查询等。行处理类算子属于算子流中的中间算子。原创 2024-09-12 10:48:46 · 475 阅读 · 0 评论 -
【第五章:Sentosa_DSML社区版-数据写出】
Sentosa_DSML社区版-数据写出:数据写出类算子作为算子流数据输出节点,将数据写入到文件或不同的数据库中,支持文本文件、 Excel 、流数据和多种数据库数据的读入。原创 2024-09-11 14:52:08 · 829 阅读 · 0 评论 -
【第四章:Sentosa_DSML社区版-数据读入】
Sentosa_DSML社区版-数据读入:数据读入类算子是给算子流提供数据的算子,将数据从文件或不同的数据库中引入到算子流中,支持文本文件、 Excel 、流数据和多种数据库数据的读入。数据读入类算子也是算子流的最前端算子,只能连接后端节点。原创 2024-09-11 13:49:01 · 1168 阅读 · 0 评论 -
【第三章:Sentosa_DSML社区版快速入门】
Sentosa_DSML社区版快速入门指南原创 2024-09-10 17:19:19 · 1254 阅读 · 0 评论 -
【第二章:Sentosa_DSML社区版产品功能】
Sentosa_DSML社区版产品功能概述原创 2024-09-10 14:07:23 · 1249 阅读 · 0 评论 -
【第一章:Sentosa_DSML社区版概述】
为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版原创 2024-09-09 19:50:30 · 1118 阅读 · 0 评论