java动态规划

本文详细阐述了动态规划的概念,包括其最优子结构、子问题重叠和无后效性。讲解了如何通过dp数组、递推公式和初始化来解决问题,并介绍了解题的关键步骤,如初始化顺序和结果输出。深入浅出地解析动态规划在信息技术中的应用。
摘要由CSDN通过智能技术生成

什么是动态规划?

动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。也就是把一个复杂的问题拆分成几个小问题,再把小问题继续拆分,然后先从小问题开始解决,层层向上,最终得到复杂问题的答案。

三大性质

  • 最优子结构性质:如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。
  • 子问题重叠性质:子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。
  • 无后效性:将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。

解题思路

  1. dp数组以及下标的含义
  2. 递推公式
  3. dp数组如何初始化
  4. 遍历顺序
  5. 打印出dp数组(如果答案不符合)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值