//数组中有效元素的长度
private int heapSize = -1;
//存储元素的堆
private int[] heap;
/**
* 堆结构的实现类
* 大根堆
*/
//往大根堆中插入一个元素
public void push(int value) {
//直接将当前值存入一个数组中,然后用heapInsert()将其挂载在大根堆(完全二叉树)上
heap[heapSize] = value;
heapInsert(heap, heapSize);
//插入一个值后,让有效元素值加一
heapSize++;
}
//参数:数组 有效元素长度(即当前元素的索引位置)
public void heapInsert(int[] arr, int heapSize) {
//获取当前结点的父结点
int index = (heapSize - 1) >> 1;
//循环判断 如果新进来的值比自己的父结点要大,让交换他和父结点,
while (arr[heapSize] > arr[index]) {
swap(arr, heapSize, index);
//再次获取交换后当前结点的父结点
index = (heapSize - 1) >> 1;
}
}
//返回堆中的根结点,并将其移除
/*
思路:先直接将最后一个元素和根结点进行交换,然后对新的根结点进行heapify,将其和左右孩子进行比较,或不动,或下移
*/
public int pop() {
//先获取根结点
int result = heap[0];
//heapify 调整大根堆
heapify(heap, 0, heapSize);
return result;
}
//参数:arr 根结点的位置index 有效元素的长度(最后一个元素的索引位置)
public void heapify(int[] arr, int index, int size) {
if (size == -1) {
//当前堆中没有值
return;
}
swap(arr, index, size);
//交换完成之后,将size缩减一,即将根结点取消挂载
size--;
//获取当前结点的左孩子
int left = (index << 1) + 1;
//循环进行比较
//循环条件:两个
// 1.当前根结点是否有左孩子(即左孩子索引是否在范围之内)
// 2.当前根结点是否有孩子
// 因为右孩子的索引肯定是比左孩子大的,所以如果左孩子存在,则两个条件都满足
while (left < size) {
//比较左孩子和右孩子哪个大
//要确保右孩子存在
//如果右孩子存在且比左孩子大 则将右孩子的索引给到largest 否则就是左孩子的索引赋值
int largest = left + 1 < size && arr[left] < arr[left + 1] ? left + 1 : left;
//比较当前更大的孩子是否比自己的父结点大 如果大 则继续赋值当前更大的孩子 否则就赋值父结点
largest = arr[largest] > arr[index] ? largest : index;
//判断largest是否等于根结点索引(即自己的孩子没有比自己大)
if (largest == index) {
//如果孩子不比自己大 直接退出
break;
}
//如果孩子比自己大 则直接交换父结点和大的孩子结点
swap(arr, index, largest);
//根结点变成新的
index = largest;
//获取新的左孩子 进行下一次循环
left = (index << 1) + 1;
}
}
//交换两个元素的位置
public void swap(int[] arr, int num1, int num2) {
if (num1 != num2) {
arr[num1] = num1 ^ num2;
arr[num2] = num1 ^ num2;
arr[num1] = num1 ^ num2;
}
}
堆结构(大根堆为例,java实现)
最新推荐文章于 2025-03-17 19:46:33 发布
本文详细介绍了大根堆的数据结构特性,并通过Java代码展示了如何实现一个大根堆。讨论了插入、删除节点以及堆排序等操作,同时探讨了大根堆在优先级队列和搜索算法中的应用。
&spm=1001.2101.3001.5002&articleId=127246112&d=1&t=3&u=859b61cb98d74cd69902d4d07fa369c6)
763

被折叠的 条评论
为什么被折叠?



