题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。每一次合并,多多可以把两堆果子合并到一起,
消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,
你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。
接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。
所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入
输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。
第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
样例输入
3
1 2 9
输出
15
提示
本题请用两张算法完成:
1.堆的应用
2.单调队列的应用
#include <cstdio>
#include <queue>
using namespace std;
priority_queue<long long, vector<long long>, greater<long long> > q;
int main(int argc, char** argv) {
long long x,y,temp,ans = 0;
int n,i;
scanf("%d", &n);
for(i = 0; i < n; i++){
scanf("%lld", &temp);
q.push(temp);
}
while(q.size() > 1){//队列中元素至少有两个
x = q.top();
q.pop();
y = q.top();
q.pop();
q.push(x + y); //取出队首两个元素相加和入队列
ans += x + y; //累计求和
}
printf("%lld\n", ans);
return 0;
}