完全二叉树的节点数与平衡二叉树、二叉树的所有路径

在这里插入图片描述
完全二叉树长这个样子
完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。
在这里插入图片描述

完全二叉树(一)如图: 222.完全二叉树的节点个数
在这里插入图片描述

完全二叉树(二)如图: 222.完全二叉树的节点个数1

可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。

递归法

class Solution:
   def countNodes(self,root:TreeNode)->int:
       return self.getNodesNum(root)
   def getNodesNum(self,cur):
       if not cur:
          return 0
       leftNum=self.getNodesNum(cur.left)
       rightNum=self.getNodeNum(cur.right)
       treeNum=leftNum+rightNum+1
       return treeNum

平衡二叉树

一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
这里强调一波概念:

二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:
在这里插入图片描述
110.平衡二叉树2

关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,leetcode的题目中都是以节点为一度,即根节点深度是1。但维基百科上定义用边为一度,即根节点的深度是0,我们暂时以leetcode为准(毕竟要在这上面刷题)。

因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)

递归法

class Solution:
    def isBalanced(self,root:TreeNode)->bool:
      if self.get_height(root)!=-1:
         return True
      else:
         return False
    
   def get_height(self,root:TreeNode)->int:
     if not root:
        return 0
     if(left_height:=self.get_height(root.left))==-1:
        return -1
     if(right_height:=self.get_height(root.right))==-1:
        return -1
     if abs(left_height-right_height)>1:
        return -1
     else:
        return 1+max(left_height,right_height)

二叉树的所有路径

给定一个二叉树,返回所有从根节点到叶子节点的路径。

说明: 叶子节点是指没有子节点的节点。

递归法+回溯

class Solution:
   def traversal(self,cur,path,result):
       path.append(cur.val)
       if not cur.left and not cur.right:
         sPath = '->'.join(map(str,path))
         result.append(sPath)
         return
       if cur.left:
         self.traversal(cur.left,path,result)
         path.pop()
       if cur.right:
         self.traversal(cur.right,path,result)
         path.pop()
       
   def binaryTreePaths(self,root):
       result=[]
       path=[]
       if not root:
          return result
       self.traversal(root,path,result)
       return result
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖子小刘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值