完全二叉树长这个样子
完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。
对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。
对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。
完全二叉树(一)如图: 222.完全二叉树的节点个数
完全二叉树(二)如图: 222.完全二叉树的节点个数1
可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。
递归法
class Solution:
def countNodes(self,root:TreeNode)->int:
return self.getNodesNum(root)
def getNodesNum(self,cur):
if not cur:
return 0
leftNum=self.getNodesNum(cur.left)
rightNum=self.getNodeNum(cur.right)
treeNum=leftNum+rightNum+1
return treeNum
平衡二叉树
一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
这里强调一波概念:
二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:
110.平衡二叉树2
关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,leetcode的题目中都是以节点为一度,即根节点深度是1。但维基百科上定义用边为一度,即根节点的深度是0,我们暂时以leetcode为准(毕竟要在这上面刷题)。
因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)
递归法
class Solution:
def isBalanced(self,root:TreeNode)->bool:
if self.get_height(root)!=-1:
return True
else:
return False
def get_height(self,root:TreeNode)->int:
if not root:
return 0
if(left_height:=self.get_height(root.left))==-1:
return -1
if(right_height:=self.get_height(root.right))==-1:
return -1
if abs(left_height-right_height)>1:
return -1
else:
return 1+max(left_height,right_height)
二叉树的所有路径
给定一个二叉树,返回所有从根节点到叶子节点的路径。
说明: 叶子节点是指没有子节点的节点。
递归法+回溯
class Solution:
def traversal(self,cur,path,result):
path.append(cur.val)
if not cur.left and not cur.right:
sPath = '->'.join(map(str,path))
result.append(sPath)
return
if cur.left:
self.traversal(cur.left,path,result)
path.pop()
if cur.right:
self.traversal(cur.right,path,result)
path.pop()
def binaryTreePaths(self,root):
result=[]
path=[]
if not root:
return result
self.traversal(root,path,result)
return result