- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 MobileNet v1
摘要部分主要讲了MobileNet v1是基于流线型结构,其使用深度可分离卷积去构建轻量化神经网络。作者提出两个简单的全局超参数来高效的平衡延迟和准确性,而超参数允许模型构建者基于问题的约束来为其应用选择合适的模型大小。作者提出问题:现在的趋势是为了达到更高的准确率,网络结构越来越深、越来越复杂,但是实际上这些都没有必要的。在真实的应用中,识别任务是需要及时地展现在被限制的计算平台上。...
2022-08-12 19:18:09 489 1
原创 AlexNet详解及pytorch实现
AlexNet详解及pytorch实现 1.背景 原文链接:ImageNet Classification with Deep Convolutional Neural Networks 作者:Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 在2012年NeurIPS发表,由此吸引了人们注意到CNN,也为随后的发展起到一定的促进作用。AlexNet参加在2010年举行的ImageNet LSVRC-2010比赛,并且以top-1和top-5错误率为37
2022-02-22 20:22:58 929
原创 深度学习调参(tricks and tips)
深度学习调参(tricks and tips) 在深度神经网络中的调参,特别是与图片相关的,主要有8个方面: 数据增强; 图片预处理; 参数初始化; 训练过程中的tips; 激活函数的选择; 多样的正则化; some insights found from figures and finally ; 集成多深度网络的方法。 数据增强 数据增强有很多方法:水平翻转,随机裁剪,色彩抖动等。此外,可以尝试多种不同处理方式的组合,比如旋转与随机展缩,也可以尝试提高图片的饱和度和像素值(S and V compo
2021-11-07 22:34:58 953
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人