自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 2022级东南大学935计算机考研经验分享

2022级东南大学935计算机考研经验分享个人情况政治英语数学专业课复试总结个人情况我报考的是东南大学计算机科学与工程学院的电子信息计算机技术方向(专硕),政治72分,英语79分,数学125分,专业课120分,初试总分396排名第二,复试排名第三,综合成绩排名第二。我本科就读于一所双非院校的计算机科学与技术专业,虽然是科班出身,但在我看来就初试而言,科班并没有那么大的优势,很多跨考的最后在初试中也取得了非常好的成绩。政治在开始政治前,看过许多经验贴,都是说政治不需要开始的太早,有的说暑假开始就行,有

2022-05-12 21:08:27 6040 5

原创 Numpy库入门

前言  在我学习机器学习的过程中,我频繁遇到了Python中处理数据的相关库,主要有Numpy,Matplotlib和Pandas库,它们分别对应着数据的表示,展示和统计分析,熟练掌握这些库的应用可以提高我们对数据的处理能力。所以我依据慕课上嵩天老师的《Python数据分析与展示》对相关内容进行总结。 课程链接  我们知道Python有列表(List)、字典(Set)、元组(Tuple)、集合(Dictionary)等基本数据类型,而Python本身是没有数组类型的。在使用数组的过程中,会发现它和列表很

2020-09-20 14:22:07 317

原创 吴恩达机器学习笔记---机器学习系统的设计

前言1.类偏斜的误差度量(Error Metrics for Skewed Classes)2.查准率和查全率之间的权衡(Trading off Precision and Recall)机器学习系统的设计(Machine Learning System Design)(一)首先要做什么(Prioritizing What to Work on)  我们将开始学习在设计机器学习系统的时候可能遇到的问题以及相应的建议,我们以一个垃圾邮件分类器作为例子展开。假设我要设计一个能够区分垃圾邮件的系统,我

2020-09-14 19:53:43 352

原创 吴恩达机器学习笔记---应用机器学习的建议

前言 1.决定下一步要做什么(Deciding What to Try Next) 2.评估假设(Evaluating a Hypothesis) 3.模型选择和交叉验证集(Model Selection and Train_Validation) 4.诊断偏差和方差(Diagnosing Bias vs. Variance) 5.正则化和偏差/方差(Regularization and Bias_Variance) 6.学习曲线(Learning Curves) 7.决定下一步做什么(Dec

2020-08-15 18:10:24 263

原创 吴恩达机器学习笔记---ex4(python实现)

练习链接编程练习4:神经网络学习1. 神经网络  在前面的练习中,您实现了神经网络的前向传播,并使用我们提供的权重来预测手写数字 。在本练习中,您将实现反向传播算法来学习神经网络的参数。1.1 可视化数据  ex4data1.mat中获得一个包含5000个手写数字训练示例的数据集。.mat格式表示数据已保存为原生Octave / MATLAB矩阵格式,而不是像csv文件那样的文本(ASCII)格式。可以使用loadmat命令将这些矩阵直接读入程序。  ex4data1.mat中有5000个训.

2020-08-04 20:49:51 1731 4

原创 吴恩达机器学习笔记---神经网络反向传播

前言 1.代价函数(Cost Function) 2.反向传播算法(Backpropagation Algorithm) 3.直观理解(Backpropagation Intuition)神经网络学习(一)代价函数(Cost Function)  之前我们学习了神经网络模型的前向传播过程,就是输入特征求得输出结果的过程。反向传播算法目的就是优化模型参数,也就是每个神经元上的权值。要想优化参数,第一步就是求出代价函数的表达式,通过最小化代价函数来求得最优参数。在给出神经网络模型的代价函数之前我们

2020-07-29 10:32:38 416

原创 吴恩达机器学习笔记---ex3(python实现)

练习链接编程练习3:多类分类与神经网络1. 多级分类  在本练习中,您将使用逻辑回归和神经网络来识别手写数字(从0到 9)。如今,自动手写数字识别被广泛使用 - 从识别邮件信封上的邮政编码(邮政编码)到识别银行支票上的金额。本练习将向您展示您学习的方法如何用于此分类任务。1.1 导入数据集  ex3data1.mat中获得一个包含5000个手写数字训练示例的数据集。.mat格式表示数据已保存为原生Octave / MATLAB矩阵格式,而不是像csv文件那样的文本(ASCII)格式。可以使用l.

2020-07-28 10:51:26 1292 1

原创 吴恩达机器学习笔记---神经网络实现XNOR功能

前言 我们通过神经网络模型实现XNOR(异或非)运算。当2个输入端中有且只有一个0时,输出为0,也就是当输入相同时,输出为1。神经网络实现XNOR(一)实现x1 AND x2  AND运算是当且仅当两者都为1时结果为1。我们使用如下的神经网络模型实现:  这时候,我们的输出函数hθ(x)h_\theta(x)hθ​(x)即为:hΘ(x)=g(−30+20x1+20x2)h_\Theta(x)=g\left( -30+20x_1+20x_2 \right)hΘ​(x)=g(−30+20x1​+2

2020-07-27 17:21:48 2355 1

原创 吴恩达机器学习笔记---神经网络前向传播

前言 1.非线性假设(Non-linear Hypotheses) 2.模型表示(Model Representation) 3.向量化(Vectorization)神经网络表述(一)非线性假设(Non-linear Hypotheses)  之前我们学习了线性回归和逻辑回归算法,理论上它们可以解决绝大部分的问题了,但是实际上,当我们的特征逐渐变多的时候,用线性回归和逻辑回归来解决问题通常会导致计算的负荷非常大。例如,当我们用逻辑回归来解决问题的时候,假设有100个特征,如果仅构造两两特征的组

2020-07-27 16:41:51 222

原创 吴恩达机器学习笔记---ex2(Python实现)

练习链接编程练习2:逻辑回归1. Logistic回归  在这部分练习中,您将建立一个逻辑回归模型来预测学生是否被录取进入大学。假设您是大学系的管理员,并且您希望根据他们在两门考试中的成绩来确定每位申请人的入学机会。您拥有以前申请人的历史数据,您可以将其用作逻辑回归的训练集。对于每个培训示例,您都有申请人在两门考试中的分数和录取决定。您的任务是建立一个分类模型,根据这两个考试的分数估算申请人的录取概率。1.1 可视化数据  数据集的每一行代表一个学生的信息,有3列。前两列代表两门考试的成绩,最.

2020-07-26 15:07:13 1185 4

原创 吴恩达机器学习笔记---正则化

前言 使用正则化技术缓解过拟合现象,使模型更具泛化性 1.过拟合问题(Overfit) 2.代价函数(Cost Function) 3.线性回归的正则化(Regularized Linear Regression) 4.逻辑回归的正则化(Regularized Logistic Regression)正则化(Regularization)(一)过拟合问题(Overfit)  先看两张图:  两张图分别代表回归问题和分类问题。相同的是,在两幅图的第一个图中,我们发现数据拟合的并不好,直

2020-07-21 14:27:22 213

原创 吴恩达机器学习笔记---逻辑回归模型参数优化

前言 利用梯度下降对逻辑回归模型的代价函数求取最小解,实现模型参数的优化 1.代价函数(Cost Function) 2.梯度下降(Gradient Descent) 3.高级优化(Advanced Optimization) 4.多类别分类(Multiclass Classification)逻辑回归模型参数优化(一)代价函数(Cost Function)  在线性回归模型中,我们选取所有样本误差的平方和的均值作为代价函数,对于逻辑回归模型,理论上也可以使用它作为代价函数。但是,将hθ(

2020-07-21 09:46:10 2501

原创 吴恩达机器学习笔记---逻辑回归模型

前言 之前学习的单变量和多变量线性回归模型都是监督学习中的回归问题,现在开始学习监督学习中的分类问题,即输出都是离散值,我们主要学习其中的逻辑回归问题,虽然有“回归”两个字,但却是分类问题。 1.分类问题(Classification) 2.假说表示(Hypoththesis Representation) 3.判定边界(Decision Boundary)逻辑回归模型(一)分类问题(Classification)  分类问题应用很广,比如说判断邮件是否为垃圾邮件或者不是,还有判断一个肿瘤是

2020-07-19 09:54:16 250

原创 吴恩达机器学习笔记---ex1练习(Python实现)

练习链接编程练习1:线性回归1.用一个变量进行线性回归  在这部分的练习中,你将用一个变量来实现线性回归来预测食品卡车的利润。 假设你是一家餐馆特许经营的首席执行官,并正在考虑在不同的城市开设新的出路。 这个连锁店在各个城市已经有卡车,而且你有来自城市的利润和人口数据。您想使用这些数据来帮助您选择要扩展到下一个城市。文件ex1data1.txt包含我们的线性回归概率数据集,第一列是一个城市的人口,第二列是该城市食品卡车的利润,负利润表示亏损。1.1绘制数据  在开始任何任务之前,通过可视化来理.

2020-07-15 16:18:02 566

原创 吴恩达机器学习笔记---向量化

前言 向量化可以通过使用系统内置的线性代数库或者数值线性代数库,大大减少代码的数量和运行的时间向量化(Vectorization)       在之前讲多变量线性回归的时候,假设函数hhh如下:       要想表示出假设函数,我们可以通过未向量化的代码通过累加θj\theta_{j}θj​xjx_{j}xj​获得,也可以直接通过向量化,把θ\thetaθ和

2020-07-14 21:47:05 429

原创 吴恩达机器学习笔记---Octave教程(Python实现)

前言 本节主要将吴恩达机器学习中的Octave教程操作用Python实现,主要内容包括: 1.基本操作(Basic Operations) 2.移动数据(Moving Data Around) 3.计算数据(Computing on Data) 4.绘图数据(Plotting Data) 5.控制语句:for,while,if语句基本操作(Basic Operations)(一)算术运算和逻辑运算# 算术运算print("5 + 6 = %d" % (5+6))print("3 -

2020-07-14 17:21:07 1423 3

原创 吴恩达机器学习笔记---正规方程及推导

前言 1.正规方程(Normal Equation) 2.正规方程不可逆性及其推导过程正规方程(Normal Equation)       到目前为止,对模型参数θ0\theta_{0}θ0​,θ1\theta_{1}θ1​,θ2\theta_{2}θ2​…θn\theta_{n}θn​的求解都是使用梯度下降的方式,这种迭代算法需要经过很多次迭代才能收敛到全局最小值。而我们知道求解函数取最小值时候的解可以利用求导,并令倒数为0

2020-07-13 09:52:00 823 1

原创 吴恩达机器学习笔记---多变量线性回归

前言多变量线性回归在原有的单变量线性回归基础上,增加变量个数,特征变为(x1,x2,...,xn)\left( {x_{1}},{x_{2}},...,{x_{n}} \right)(x1​,x2​,...,xn​)1.多维特征(Multiple Features)2.多变量梯度下降(Gradient Descent for Multiple Variables)多变量线性回归(Multivariate Linear Regression)(一)多维特征(Multiple Features)&n

2020-07-12 20:48:04 306

原创 吴恩达机器学习笔记---线性代数复习

前言 1.矩阵和向量(Matrices and Vectors ) 2.矩阵的加、减、乘、逆和转置线性代数回顾(Linear Algebra Review)       这一节主要是回顾矩阵和向量的有关知识,比较简单,先罗列一下知识点,再通过代码回顾一下。矩阵的维数用行数×列数(m×n)来表示一般用大写字母A,B,C等表示矩阵,用下标指引矩阵中的元素,例如Aij表示是第i行第j列的元素(一般从1开始计数,有时从0开始计数)

2020-07-08 10:23:17 182

原创 吴恩达机器学习笔记---单变量线性回归

前言线性回归算法是我们学习的第一个监督学习算法,我们将从最简单的单变量线性回归开始学习。主要内容:一、代价函数(Cost Function)二、梯度下降(Gradience Descent)单变量线性回归(Linear Regression with One Variable)(一)模型表示(Model Representation)       首先,同样是先从房价预测的例子开始,我们将有已有的数据表示在坐标轴上,横坐标表

2020-07-07 21:39:29 224

原创 吴恩达机器学习笔记---监督学习和无监督学习

吴恩达机器学习笔记Introduction前言引言(Introduction)(一)欢迎(Welcome)(二)什么是机器学习(What is Machine Learning)(三)监督学习(Supervised Learning)(四)无监督学习(Unsupervised Learning)前言 一、监督学习(Supervised Learning) 二、无监督学习(Unsupervised Learning)引言(Introduction)(一)欢迎(Welcome) &n

2020-07-07 17:27:15 404

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除