第五章 树和二叉树
5.1 树和二叉树的定义
5.1.1 树的定义
树(Tree)是n(n>=0)个结点的有限集。
若n=0,称为空树;
若n > 0 ,则它满足如下两个条件:
(1)有且仅有一个特定的称为根(root)的结点;
(2)其余结点可分为m(m>=0)个互不相交的有限集 T1,T2,T3…,Tm
其中每一个集合本身又是一棵树,并称为根的子树(SubTree)
5.1.2 树的基本术语
结点的度:分支的个数
树的度:树内分支的度的最大值
树的深度:树中结点的最大层次
有序树:树种结点的各子树从左至右有次序(最左边的为第一个孩子)
无序树:树种结点的各子树无次序
森林:是m(m>=0)棵互不相交的树的集合
树结构和线性结构比较
5.1.3 二叉树的定义
二叉树是n(n>=0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的分别称作这个根的左子树和右子树的二叉树组成。
特点:
1.每个结点最多有两个孩子(二叉树中不存在度大于2的结点)。
2.子树有左右之分,其次序不能颠倒
3.二叉树可以是空集合,根可以有空的左子树或空的右子树
注意:二叉树不是树的特殊情况,它们是两个概念。
二叉树结点的子树要区分左子树和右子树,即使只有一个子树也要区分,而树不用。
虽然二叉树和树的概念不同,但是树的基本术语对二叉树都适用。
5.2 树和二叉树的抽象数据类型定义
5.3 二叉树的性质和存储结构
5.3.1 二叉树性质
性质1
性质2
性质3
满二叉树
完全二叉树
特点: 1.叶子只可能分布在层次最大的两层上
2.对任一结点,如果其右子树的最大层次为i,则其左子树的最大层次必为i或i+1。
性质4
性质4表明了完全二叉树结点数n与完全二叉树深度k之间的关系
性质5
5.3.2 二叉树存储结构
二叉树的顺序存储
实现:按满二叉树的结点层次编号,依次存放二叉树中的数据元素。
//二叉树顺序存储表示
#define MAXTSIZE 100
Typedef TElemType SqBiTree[MAXTSIZE]
SqBiTree BT;
顺序存储如图:
二叉树的顺序存储缺点:
最坏情况
特点:结点间关系蕴含在其存位置中,浪费空间,适合存满二叉树和完全二叉树
二叉树的链式存储结构
//二叉树链式存储表示
typedef struct BiNode{
TElemType data;
struct BiNode *lchild,*rchild; //左右孩子
}BiNode,*BiTree;
二叉树链式表示
在n个结点的二叉链表中,有n+1个空指针域(线索二叉树会利用起来)
5.4 遍历二叉树和线索二叉树
5.4.1 遍历二叉树
遍历定义——顺着某一条搜索路径巡防二叉树中的结点,使得每个结点均被访问一次,而且仅被访问一次。
遍历目的——得到树种所有结点的一个线性列表
遍历用途——它是树结构插入、删除、修改、查找和排序运算的前提,是二叉树一切运算的基础和核心。
遍历分为根左右、左根右、左右根 又称为 先序、中序、后序
二叉树的先序遍历(根左右)
Status PreOrderTraverse(BiTree T){
if(T != null)return ok; //空树
else{
visit(T);
PreOrderTraverse(T->lchild); //递归遍历左子树
PreOrderTraverse(T->rchild); //递归遍历右子树
}
}
二叉树的中序遍历(左根右)
Status PreOrderTraverse(BiTree T){
if(T != null)return ok; //空树
else{
PreOrderTraverse(T->lchild); //递归遍历左子树
visit(T);//中序遍历根节点在中间输出
PreOrderTraverse(T->rchild); //递归遍历右子树
}
}
二叉树的后序遍历(左右根)
Status PreOrderTraverse(BiTree T){
if(T != null)return ok; //空树
else{
PreOrderTraverse(T->lchild); //递归遍历左子树
PreOrderTraverse(T->