- 博客(8)
- 收藏
- 关注
原创 从零部署kv260官方例程smartcam
xilinx KV260 是 Kria 系列的开发板,全名应该是 Kria KV260 视觉 AI 开发套件。这款开发板专为边缘视觉应用设计,特别是针对那些需要高性能计算能力的应用场景,如机器学习、计算机视觉等。KV260 开发板集成了 Xilinx 的 Zynq UltraScale+ MPSoC 器件,该器件结合了 ARM 多核处理器与 FPGA 可编程逻辑,能够在提供软件可编程能力的同时,也提供硬件优化的性能。
2025-03-04 00:20:46
979
2
原创 Three-Dimensional Location Estimation of Circular Features for Machine Vision学习
从二维图像坐标中提取三维信息是机器视觉和计算机视觉中的一个基本问题。我们知道一般想要定位一个物体的位置我们至少需要对比一点在两个相机中的坐标,也就是使用双目相机进行定位。然而如何使用单目相机进行定位呢?前人想到使用确定形状圆来辅助定位。选择圆来进行定位的原因如下:1:许多制造对象具有圆形孔或圆形表面轮廓。2:从数学角度来看,圆具有以下属性:它在任何任意方向上的透视投影始终是一个精确的椭圆,并且由于其相对于中心的对称性,它可以用三个参数定义。3:已经证明圆具有较高的图像定位精度。
2025-02-23 23:51:41
883
原创 基于opencv for unity搭建基于视频跟踪的框架
在程序开始运行前,中央区域会启动摄像头并播放画面,点击select后,画面暂停,这时用户在屏幕上选择的点将存入到点阵当中,而且永远只保留最新的两个点。相当于我们在Start函数中进行我们的初始化,然后自动给了我们一个循环,在循环里反复执行我们的代码。这里有一点要注意,因为调用了WebCamTexture2MatHelper,在对象当中要把WebCamTexture2MatHelper的脚本添加上去,同时要选择对应的On initialized等对应的函数。基于这一理念,来设计我们的视频追踪框架。
2025-02-13 19:45:01
429
原创 基于opencv for unity部署眼动跟踪onnx模型
现在主流的神经网络模型多是基于torch模型进行训练和推理,在opencv当中也提到了其模型可以依据caffe,torch和tensorflow来进行初始化。查阅资料发现,目前最新的在unity下可用的opencv为opencv for unity2.6.5,可以看到它所支持的最低版本为2021.3.35或更高,所以选了一个长期支持的unity版本2022.3.52。正好最近有个项目需要用深度模型处理后的结果与游戏进行交互,查阅资料发现在unity下部署训练后的模型没有什么人教,这就摸索实验一下。
2025-02-13 17:32:02
352
原创 基于opencv for unity部署追踪部分的onnx模型
可以看到reshape的方法很少,最常用的为最下面的一种,这种方法reshape后的尺寸是由int数组来储存的,即只要总量对的上即可。可以看到,search_crop是搜索区域,和上一张的模板区域方法一致,注意是的搜索的比例和模板比例一般不一致,调整输入参数即可。以上操作返回的即为预测框pred_bbox,但要注意这里对应的pred_bbox是相对于搜索区域的位置,需要一个坐标转换将其变为相对于全图的区域,这里也不啰嗦直接给出实现。在这里需要注意的是,在有多个输入时,需要对模型的每个输入按名称进行赋值。
2025-02-13 17:31:34
933
原创 基于opencv for unity部署追踪特征提取的onnx模型
在进行图像运算操作以及显示时,Mat的形式基本都为二维矩阵对应图片的size,图片的通道数用元素值得type来代替,而我们的目标是将其转换为onnx模型的输入格式BCHW形式。在这里首先查看我们的Mat格式,由于在设置摄像机时已经对输出格式进行了设置,这里Mat的内容格式为CV_8UC3,及已经进行了矫正,若没有在开始进行设定,默认格式为CV_8UC4及多一个透明度的通道,需要额外进行转换。我们要将其转换为onnx需要的输入形式,查看onnx文件,可以看到onnx的输入要求为float32。
2025-02-08 00:29:25
706
原创 基于opencv for unity实现目标跟踪中的模板区域生成函数
值得实现说明的是,bbox的定义规则在大多数情况下都为(topleft.x,topleft.y,width,height),也是常用的coco的bbox的使用方式。方法为先对图像进行放缩,再计算放缩的比例,最后依据比例对bbox进行放缩,具体实现如下。该函数需要原始输入,填充后的图像尺寸,各个边填充的尺度,填充值类型以及填充颜色。观察函数,函数的输入包含crop_size为输出的图片尺寸,offset为选定区域的扩展比例。在给定的siam追踪例子中其实已经给出的类似的功能,但并没有封装成函数。
2025-02-07 00:49:16
372
原创 扩散模型学习(自用)(一)
最近准备确定自己的研究方向,于是广泛了解各种热门的网络模型,发现了当下较为热门的扩散模型。这是一种可解释性模型,因此我准备以此为切入点。B站上有很多的介绍材料。
2023-11-06 08:33:30
133
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人