- 博客(2)
- 收藏
- 关注
原创 数据分析与建模知识点总结(二)——聚类
数据分析与建模知识点总结(二)——聚类 一、聚类 1、定义 聚类是指在没有训练标号样本的情况下,按照某种准则,将样本集划分为若干簇。 2、划分准则 聚类的划分准则多种多样,比如:举例准则,相似准则,关联度准则等,其中最常用的是距离准则。 3、距离准则 按照远近程度聚类需要明确两个概念,一个是点和点之间的距离,一个是类和类之间的距离。 (1)点距离 点和点之间的距离有多种定义方式,最简单的是欧氏距离。 欧式距离 曼哈顿距离 切比雪夫距离 闵可夫斯基距离 马氏距离 夹角余弦 (2)类距离 由一
2020-12-03 21:27:46 578
原创 数据分析与建模知识点总结(一)
数据分析与建模 1.什么是大数据? 大数据是一种强大到在获取、存储、管理、分许方面远超出传统数据库软件工具能力范围的数据集合。 2.大数据的4V特性 Volume(大量):海量的数据规模 Velocity(高速):快速的数据流转 Variety(多样):多样的数据类型 Value(价值):价值密度低 ...
2020-12-01 21:40:54 1156
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人