CF835C Star sky
洛谷链接
题目描述
The Cartesian coordinate system is set in the sky. There you can see n stars, the i -th has coordinates ( xi,yi), a maximum brightness c , equal for all stars, and an initial brightness si (0<=si<=c ).
Over time the stars twinkle. At moment 0 the i -th star has brightness si. Let at moment t some star has brightness x . Then at moment (t+1) this star will have brightness x+1 , if x+1<=c , and 0 , otherwise.
You want to look at the sky q times. In the i -th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1i, y1i) and the upper right — (x2i,y2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
输入格式
The first line contains three integers n , q , c ( 1<=n,q<=10 ^5, 1<=c<=10 ) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next n lines contain the stars description. The i -th from these lines contains three integers xi, yi, si(1<=xi,yi<=100 , 0<=si<=c<=10 ) — the coordinates of i -th star and its initial brightness.
The next q lines contain the views description. The i -th from these lines contains five integers ti,x1i, y1i, x2i,y2i(0<=ti<=10^9
, 1<=x1i,x2i<=100 , 1<=y1i,y2i<=100 ) — the moment of the i -th view and the coordinates of the viewed rectangle.
输出格式
For each view print the total brightness of the viewed stars.
输入输出样例
输入 #1
2 3 3
1 1 1
3 2 0
2 1 1 2 2
0 2 1 4 5
5 1 1 5 5
输出 #1
3
0
3
输入 #2
3 4 5
1 1 2
2 3 0
3 3 1
0 1 1 100 100
1 2 2 4 4
2 2 1 4 7
1 50 50 51 51
输出 #2
3
3
5
0
说明/提示
Let’s consider the first example.
At the first view, you can see only the first star. At moment 2 its brightness is 3 , so the answer is 3 .
At the second view, you can see only the second star. At moment 0 its brightness is 0 , so the answer is 0 .
At the third view, you can see both stars. At moment 5 brightness of the first is 2 , and brightness of the second is 1 , so the answer is 3 .
Solution
二维前缀和 + 加一维表示亮度
不用更新,所以不需要使用树状数组维护,直接做二维前缀和即可
star[i][j][k] 表示(1,1) 到(i,j)中亮度为k的星星的数量。
代码
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
typedef long long ll;
const int SZ = 100 + 5;
int star[SZ][SZ][12];
int n,q,c;
int main()
{
int x,y,s,t,xx,yy;
scanf("%d%d%d",&n,&q,&c);
for(int i = 1;i <= n;i ++ )
{
scanf("%d%d%d",&x,&y,&s);
star[x][y][s] ++ ;
}
for(int i = 1;i <= 100;i ++ )
for(int j = 1;j <= 100;j ++ )
for(int k = 0;k <= c;k ++ )
{
star[i][j][k] += star[i - 1][j][k] + star[i][j - 1][k] - star[i - 1][j - 1][k];
}
for(int i = 1;i <= q;i ++ )
{
int ans = 0;
scanf("%d%d%d%d%d",&t,&x,&y,&xx,&yy);
for(int k = 0;k <= c;k ++ )
{
ans += (k + t) % (c + 1) * (star[xx][yy][k] - star[xx][y - 1][k] - star[x - 1][yy][k] + star[x - 1][y - 1][k]);
}
printf("%d\n",ans);
}
//system("pause");
return 0;
}
2020.4.2